DUMFRIES & GALLOWAY COUNCIL

SPARLING FOOTBRIDGE, NEWTON STEWART

REPORT ON GROUND INVESTIGATION

Contract: 31371

Date: July 2017

Ian Farmer Associates (1998) Limited Unit 4 Faraday Close, Washington, Tyne and Wear, NE38 8QJ Tel: 0191 482 8500 Fax: 0191 482 8520

REPORT ON GROUND INVESTIGATION

Carried out at

SPARLING FOOTBRIDGE, NEWTON STEWART

Prepared for

DUMFRIES & GALLOWAY COUNCIL Engineering Design Cargen Tower Garroch Business Park Garroch Loaning, Dumfries, DG2 8PN

Contract No: 31371

Date: July 2017

Ian Farmer Associates (1998) Limited Unit 4, Faraday Close, Washington, Tyne and Wear, NE38 8QJ Tel: 0191 482 8500 Fax: 0191 482 8520

Report Issue Log

	Issued By	Checked By
Draft Issue	P. Challinor	
Issue Method	Date	Date
Е	30/06/2017	

	Issued	Checked By
Revision		C. Lewis
Issue Method	Date	Date
Е	03/07/2017	03/07/2017

Revision	Issued By	Checked By
Issue Method E/P/D	Date	Date

Issue Method: E = Electronic P = Paper D = Disc

EXECUTIVE SUMMARY

On the instructions of Dumfries and Galloway Council, a ground investigation was undertaken to determine ground conditions to enable foundation design to be carried out, together with a contamination risk assessment, in respect to construction of a new footbridge over the River Cree, at Newton Stewart, Dumfries and Galloway.

The site is situated in the south of Newton Stewart on the western and eastern banks of the River Cree and can be located by National Grid Reference NX 412651.

To the immediate east of the proposed footbridge is agricultural land. To the west are commercial and residential areas of Newton Stewart.

Geological mapping indicates the site to be underlain by superficial deposits of Alluvium, associated with the River Cree, comprising silt, sand and gravel and is underlain by Wacke comprising sandstone, siltstone and mudstone in variable proportions.

On the western bank of the River Cree, and immediately east of the site, superficial deposits are indicated to be thin or absent and further to the east, superficial Alluvium is found overlying Wacke.

The site work was carried out between the 18th and 22nd May 2017 and consisted of three boreholes sunk by light cable percussion method and, designated BH1 to BH3.

Piezometers were installed in selected BH1 and BH2 and these were later monitored to determine ground water rest levels.

The ground conditions consist of near surface topsoil overlying alluvial sandy gravel. Ground water was encountered at a minimum depth of 1.8mbgl.

Consideration could be given to the adoption of shallow spread foundations to support the proposed structure. Spread foundations will be installed in the alluvial gravel at a minimum depth of 0.75mbgl.

To the eastern bank the ground conditions at foundation level consist of very dense/ medium dense sandy gravel and on the western bank loose/ medium dense sandy gravel.

On the basis of the corrected 'N' values recorded in the shallow stratum and in order to limit settlements to less than 25mm, an allowable bearing pressure of 110kPa could be adopted for design purposes. Settlements should be checked when the final structural loading is known.

It is likely that the settlement would be greater on the western bank foundations however settlement will be immediate within the construction period and using the above figure for design will limit the amount of differential movement to acceptable levels.

On the basis of the laboratory test results it is considered that a Design Sulphate Class for the site soils (silty sandy gravel) may be taken as DS-1. The site conditions would suggest that an ACEC class for the site of AC-1 would be appropriate.

The risk assessment has been based on guidelines for general open space (adjacent to dwellings).

The results of the soil analyses, with the exception of lead, have been compared to the recently published S4ULs (Suitable 4 Use Levels) determined by LQM and CIEH. As the CLEA SGV for lead was withdrawn in 2014, DEFRA have produced C4SLs (Category 4 Screening Levels) for lead and a number of other contaminants. As no S4UL has been produced for lead, the C4SL has been adopted.

As can be seen from the above tabulated results there were no determinants with values above the Guidance Values.

A conceptual model has been formed to reflect the findings of the contamination risk assessment and the revised conceptual model, detailing the relevant pollutant linkages, is tabulated below:

Source	Potential Contaminants of Concern	Potential Pathways	Receptor Group	Risk	
Natural Alluvial soils	Heavy Metals (Copper & Zinc)	Surface runoff and drainage into the River Cree *2	Water EnvironmentGroundwaterSurface Water	Low/ Moderate	
*2 – Pathway exists only during the construction period					

The results shows elevated levels of leachable copper and zinc, however the total concentrations were found to be low at 71mg/kg for copper and 1100mg/kg for zinc (below residential with gardens guidance) and therefore are unlikely to be of a concern.

To reduce the risk of leachate contaminating the River Cree it is suggested that any run off or drainage be directed away from the river and therefore any pumping of surface water from excavations into the river will need to be avoided.

CONTENTS

EXECUTIVE SUMMARY

1.0	INTF	RODUCTION	6
2.0		SETTING	7
	2.1 2.2	Site Location Geological Setting	7 7
3.0	SITE	WORK	8
4.0		ORATORY TESTS	9
	4.1	Geotechnical Testing	9
	4.2	Chemical Testing	9
5.0	GRO	UND CONDITIONS ENCOUNTERED	10
	5.1	Sequence	10
	5.2	Topsoil	10
	5.3	Alluvium	10
	5.4	Groundwater	10
6.0	GEO	TECHNICAL ASSESSMENT AND	
		OMMENDATIONS IN RELATION TO THE	
		POSED DEVELOPMENT	11
	6.1	Structural Details	11
	6.2	Assessment of Soil Condition	11
	6.3	General	11
	6.4	Foundation Options	11
		Excavations	12
	6.6	Chemical Attack on Buried Concrete	12
7.0	ENV	IRONMENTAL RISK ASSESSMENT IN	
	REL	ATION TO PROPOSED DEVELOPMENT	13
	7.1	Contaminated Land	13
	7.2	Risk Assessment – Human Health	13
	7.3	Risk Assessment - Controlled Waters	14
	7.4	Risk Evaluation	15
	7.5	Summary of Risk Evaluation	15
8.0	MAN	JAGEMENT OF CONTAMINATION	16
	8.1	Remediation and Verification	16
	8.2	Management of Unidentified Sources of Contamination	16
	8.3	Consultation	17
	8.4	Risk Management During Site Works	17
9.0	REFI	ERENCES	18

APPENDIX 1	-	DRAWINGS
Figure A1.1	-	Site Location Plan

Figure A1.2 Figure A1.3	-	Site Aerial Photograph Exploratory Hole Plan	
APPENDIX 2	- - -	SITE WORK General Notes on Site Work Borehole Records Groundwater Monitoring Records	ii/i-ii/iii
APPENDIX 3 Test Report 31371/1 Certificate No: 17-01408	- - 3	LABORATORY TESTS General Notes on Laboratory Tests on Soils Geotechnical Laboratory Test Report Results of Special Digest 1 Tests	iii/i-iii/i
APPENDIX 4 Certificate No: 17-01474	- 1	CHEMICAL TESTS Results of Chemical Tests	
APPENDIX 5	-	CONTAMINATION ASSESSMENT General Notes on Chemical Contamination	v/i-v/ix

1.0 INTRODUCTION

- 1.1 On the instructions of Dumfries and Galloway Council, a ground investigation was undertaken to determine ground conditions to enable foundation design to be carried out, together with a contamination risk assessment, in respect to construction of a new footbridge over the River Cree, at Newton Stewart, Dumfries and Galloway.
- 1.2 This report has been prepared for the sole use of the Client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.
- 1.3 The comments given in this report and the opinions expressed herein are based on the information received, the conditions encountered during site works, and on the results of tests made in the field and laboratory. However, there may be conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report.
- 1.4 The comments on groundwater conditions are based on observations made at the time the site work was carried out. It should be noted that groundwater levels vary owing to seasonal or other effects.

2.0 SITE SETTING

2.1 Site Location

- 2.1.1 The site is situated in the south of Newton Stewart on the western and eastern banks of the River Cree and can be located by National Grid Reference NX 412651.
- 2.1.2 To the immediate east of the proposed footbridge is agricultural land. To the west are commercial and residential areas of Newton Stewart.
- 2.1.3 In the west the proposed new bridge will be situated in the vicinity of Goods Lane. In the east the bridge will connect with a footpath following the eastern bank of the River Cree.
- 2.1.4 A site location plan and aerial photograph of the site is presented in Appendix 1, Figures A1.1 and A1.2.

2.2 Geological Setting

- 2.2.1 Published geological information indicates the site to be underlain by superficial deposits of Alluvium, associated with the River Cree, comprising silt, sand and gravel.
- 2.2.2 On the western bank of the River Cree, and immediately east of the site, superficial deposits are indicated to be thin or absent. Bedrock is indicated to be Wacke comprising sandstone, siltstone and mudstone in variable proportions.
- 2.2.3 In the east, Wacke is also indicated to be present, underlying the superficial Alluvium.

3.0 SITE WORK

- 3.1 The site work was carried out between the 18th and 22nd May 2017, in general accordance with the practices set out in BS 10175:2011+A1:2013, ref. 9.2, BS 5930:2015, ref. 9.3, and ISO 1997:2007, ref. 9.4. The locations of the exploratory were determined by Dumfries & Galloway Council.
- 3.2 Three boreholes, designated BH1 to BH3, were sunk by light cable percussion method at the positions shown on the exploratory hole plan, Appendix 1, Figure A1.3. The depths of boreholes, descriptions of strata encountered and comments on groundwater conditions are given in the borehole records, presented in Appendix 2.
- 3.3 Representative samples were taken at the depths shown on the borehole records and despatched to the laboratory for examination and testing. Samples for environmental purposes were collected in amber glass jars and kept in a cool box.
- 3.4 Standard (split-barrel and cone) penetration tests, refs. 9.6 and 9.5, were carried out in the boreholes in the various strata to assess the relative density or consistency. The values of penetration resistance are given in the borehole records.
- 3.5 Piezometers were installed in selected BH1 and BH2 as detailed in the table below. . A visual representation of the piezometer installation is given in the borehole records.

Borehole Nº	Depth to base of borehole (m bgl)	Response Zone (m bgl)	Depth of piezometer (m bgl)	Nominal pipe diameter (mm)
BH1	4.60	3.00 - 4.60	4.50	19
BH2	5.00	2.00 - 5.00	3.50	19

- 3.6 Groundwater monitoring visits have been undertaken on one occasions to-date, the records of which are presented in Appendix 2.
- 3.7 The ground levels at the borehole locations were not determined.

4.0 LABORATORY TESTS

4.1 Geotechnical Testing

- 4.1.1 Geotechnical soil analysis was undertaken of samples obtained during the investigation as follows:
 - 5 No. Particle Size Distributions (by Wet Sieving)
 - 5 No. pH Values
 - 5 No. Sulphate Contents (Water Soluble)
- 4.1.2 The laboratory test reports are presented in Appendix 3, Test Report 31371/1 and Certificate of Analysis 17-01408.

4.2 Chemical Testing

- 4.2.1 The chemical analyses were carried out on four soil samples. Leachate analysis was also conducted on one of the samples. The nature of the analyses is detailed below:
 - **Metals** arsenic, cadmium, chromium (total), copper, lead, mercury, nickel, selenium and zinc.
 - **Inorganics** cyanide (total)
 - **Organics** polycyclic aromatic hydrocarbons (PAH) USEPA 16 suite.
- 4.2.2 The results of these tests are presented in Appendix 4, Certificate of Analysis 17-01474.

5.0 GROUND CONDITIONS ENCOUNTERED

5.1 Sequence

5.1.1 The sequence and indicative thicknesses of strata are provided below:

Strata Encountered	Depth Encoun	Strata Thickness	
Strata Encountereu	From	То	(m)
Topsoil	0.00	0.10 - 0.60	0.10 - 0.60
Silty sandy gravel	0.10 - 0.60	2.40 - 5.00	1.80 - 4.80

5.2 Topsoil

- 5.2.1 Topsoil was encountered at the surface in all boreholes to a maximum thickness of 0.6m. (BH3)
- 5.2.2 Topsoil was predominantly a clayey gravelly sand with a dark colour suggesting an organic content.

5.3 Alluvium

- 5.3.1 The alluvium deposit consisted of a silty/clayey sandy gravel with a low to high cobble content.
- 5.3.2 In-situ penetration testing indicated predominantly a very dense relative density from 1.2mbgl in boreholes BH2 and 3 (eastern bank). However in borehole BH1 (western bank), the relative density was very dense below 4.20mbgl.
- 5.3.3 Testing in borehole BH1 indicated a loose relative density to a depth of 2.0mbgl becoming medium dense and then dense at 2.5mbgl.
- 5.3.4 Laboratory participle size distributions undertaken on bulk samples from boreholes BH1 and 2 indicated a gravel content of between 27% and 71%, averaging 52%, sand content of between 13% and 28%, averaging 22% and silt/clay content of between 7% and 18%, averaging 13%, and cobble content up to 29%, averaging 13%.
- 5.3.5 The soil description based upon these average values is 'slightly clayey very sandy GRAVEL with a medium cobble content.

5.4 Groundwater

- 5.4.1 Groundwater was encountered at depths of 1.8, 2.7 and 4.3mbgl and the levels were found to rise by 0.1m in a 20minute rest period which would suggest that a minor hydraulic head being present.
- 5.4.2 On return visits to monitor the standpipes, groundwater levels were found at 0.84mbgl (BH2) and 3.19mbgl (BH1) which is a slight increase from the original strike level.

6.0 GEOTECHNICAL ASSESSMENT AND RECOMMENDATIONS IN RELATION TO THE PROPOSED DEVELOPMENT

6.1 Structural Details

- 6.1.1 It is understood that the proposed development is to consist of the construction of a new footbridge over the River Cree.
- 6.1.2 The eastern approach is ramped up from BH3 to BH2, so as to provide a level access on the western bank. The west bank is circa 3.0m higher than the east bank so such construction will allow for wheel chair access.
- 6.1.3 Precise structural details and loadings were not available at the time of preparation of this report.

6.2 Assessment of Soil Condition

6.3 General

- 6.3.1 The soils encountered on the site was principally **coarse grained**, granular.
- 6.3.2 SPT 'N' values reported on the borehole logs are as measured and uncorrected.
- 6.3.3 However for general design in sands the 'N' values should be normalised to 60% by the following equation:-
- 6.3.4 $N_{60} = E_r/60.N$ where:-

N is the blow count and

 E_r is the energy ratio of the specific test equipment

6.3.5 Further corrections for rod length and overburden pressure in sands may be applied in accordance with BS EN ISO 22476-3, ref. 9.5.

6.4 Foundation Options

- 6.4.1 On the basis of observations made on site together with results of in-situ and laboratory tests, together with empirical correlations, consideration could be given to the adoption of shallow spread foundations to support the proposed structure.
- 6.4.2 Spread foundations will be installed in the alluvial gravel at a minimum depth of 0.75mbgl.
- 6.4.3 To the eastern bank the ground conditions at foundation level consist of very dense/ medium dense sandy gravel and on the western bank loose/ medium dense sandy gravel.
- 6.4.4 On the basis of the corrected 'N' values recorded in the shallow stratum and in order to limit settlements to less than 25mm, an allowable bearing pressure of

110kPa could be adopted for design purposes. Settlements should be checked when the final structural loading is known.

- 6.4.5 It is likely that the settlement would be greater on the western bank foundations however settlement will be immediate within the construction period and using the above figure for design will limit the amount of differential movement to acceptable levels.
- 6.4.6 Alternatively, if spread foundations are considered to be unsuitable, pile foundations could be considered.
- 6.4.7 The carrying capacity of piles depends not only on their size and the ground conditions but also on their method of installation. Pile design and installation are continuously evolving processes and state-of-the-art techniques are often employed before they reach the public domain, perhaps several years down the line. Therefore, it is recommended that specialist Piling Contractors be contacted as to the suitability and carrying capacity of their piles in the ground conditions pertaining to the site.

6.5 Excavations

- 6.5.1 On the basis of observations on site together with the results of in-situ and laboratory tests, it is considered that excavations to less than 1.20m would not stand unsupported in the short term.
- 6.5.2 Side support for safety purposes should of course be provided to all excavations which appear unstable, and those in excess of 1.20m deep, in accordance with Health and Safety Regulations, ref. 9.7.
- 6.5.3 Groundwater should be expected in shallow excavations for foundations due to the close proximity of the River Cree. It is considered that this could be dealt with by general site pumping without resulting in dewatering measures.

6.6 Chemical Attack on Buried Concrete

- 6.6.1 The results of chemical tests indicate sulphate concentrations in the soils of between 13mg/l and 29mg/l as a 2:1 water/soil extract, with pH values in the range of 7.6 to 8.1.
- 6.6.2 In the groundwater a sulphate concentration of 8.5mg/l with pH value of 6.2 was recorded.
- 6.6.3 It is recommended that for conventional shallow foundations the groundwater should be regarded as mobile.
- 6.6.4 On the basis of the laboratory test results it is considered that a Design Sulphate Class for the site soils (silty sandy gravel) may be taken as DS-1. The site conditions would suggest that an ACEC class for the site of AC-1 would be appropriate.

7.0 ENVIRONMENTAL RISK ASSESSMENT IN RELATION TO PROPOSED DEVELOPMENT

7.1 Contaminated Land

7.1.1 The statutory definition of contaminated land is given in Appendix 5.

7.2 Risk Assessment – Human Health

- 7.2.1 The proposed development consists of the installation of a footbridge with the associated construction of supporting foundations. To the immediate east of the proposed footbridge is agricultural land. To the west are commercial and residential areas of Newton Stewart.
- 7.2.2 The risk assessment has been based on guidelines for general open space (adjacent to dwellings).
- 7.2.3 The results of the soil analyses, with the exception of lead, have been compared to the recently published S4ULs (Suitable 4 Use Levels) determined by LQM and CIEH, ref. 10.13. As the CLEA SGV for lead was withdrawn in 2014, DEFRA have produced C4SLs (Category 4 Screening Levels) for lead and a number of other contaminants, ref 10.14. As no S4UL has been produced for lead, the C4SL has been adopted.

Open space (adjacent to dwellings)	Determinant	Guidan ce Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source	Test Results
		1% SOM	2.5% SOM	6% SOM	Data Source	(mg/kg)
	Arsenic	79	79	79	LQM/CIEH S4UL	12 to 18
	Cadmium	120	120	120	LQM/CIEH S4UL	0.2 to 8.1
	Chromium (III)	1500	1500	1500	LQM/CIEH S4UL	46 to 79
	Copper	12000	12000	12000	LQM/CIEH S4UL	26 to 71
Metals	Lead	630	630	630	DEFRA C4SL	27 to 270
	Mercury	16	16	16	LQM/CIEH S4UL	<0.05 to 5.2
	Nickel	230	230	230	LQM/CIEH S4UL	43 to 57
	Selenium	1100	1100	1100	LQM/CIEH S4UL	<0.5
	Zinc	81000	81000	81000	LQM/CIEH S4UL	96 to 1100
Other	Cyanide	10.8	10.8	10.8	PRG	<0.1 to 0.7
РАН	Acenaphthene	15000	15000	15000	LQM/CIEH S4UL	<0.1
РАП	Acenaphthylene	15000	15000	15000	LQM/CIEH S4UL	<0.1

7.2.4 The Generic Assessment Criteria (GAC) used within this contamination assessment have been tabulated below, together with the chemical test results.

Open space (adjacent to dwellings)	Determinant	Guidan ce Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source	Test Results (mg/kg)
		1% SOM	2.5% SOM	6% SOM		
	Anthracene	74000	74000	74000	LQM/CIEH S4UL	<0.1
	Benzo(a)anthracene	29	29	29	LQM/CIEH S4UL	<0.1
	Benzo(a)pyrene	5.7	5.7	5.7	LQM/CIEH S4UL	<0.1
	Benzo(b)fluoranthene	7.1	7.1	7.1	LQM/CIEH S4UL	<0.1
	Benzo(ghi)perylene	640	640	640	LQM/CIEH S4UL	<0.1
	Benzo(k)fluoranthene	190	190	190	LQM/CIEH S4UL	<0.1
	Chrysene	57	57	57	LQM/CIEH S4UL	<0.1
	Dibenzo(ah)anthracene	0.57	0.57	0.57	LQM/CIEH S4UL	<0.1
	Fluoranthene	3100	3100	3100	LQM/CIEH S4UL	<0.1
	Fluorene	9900	9900	9900	LQM/CIEH S4UL	<0.1
	Indeno(123-cd)pyrene	82	82	82	LQM/CIEH S4UL	<0.1
	Napthalene	4900	4900	4900	LQM/CIEH S4UL	<0.1
	Phenanthrene	3100	3100	3100	LQM/CIEH S4UL	<0.1
	Pyrene	7400	7400	7400	LQM/CIEH S4UL	<0.1

- 7.2.1 Where the concentrations determined on site are at or below the respective Generic Assessment Criteria, they are considered not to pose a risk and are removed from further consideration, unless otherwise stated.
- 7.2.2 As can be seen from the above tabulated results there were no determinants with values above the Guidance Values.

7.3 Risk Assessment - Controlled Waters

- 7.3.1 The site is located next to the River Cree.
- 7.3.2 An initial assessment of the risk to controlled waters has been carried out on the basis of the results of one leachate analysis undertaken on samples from borehole BH3. The results have been screened against the Water Supply (Water Quality) Regulations 2000, ref. 9.16, and the *freshwater* Environmental Quality Standards (EQS), ref. 9.17.

Contaminant	Units	EQS ¹	Test Results
Arsenic	ug/l	50 ²	1.4
Cadmium	ug/l	0.45	0.05
Chromium III	ug/l	4.72*	3.3
Copper	ug/l	12	6.9
Lead	ug/l	7.2 ²	0.65
Mercury	ug/l	0.07	< 0.01
Nickel	ug/l	20 ²	13

Contaminant	Units	EQS ¹	Test Results
Selenium#	ug/l	10	2.4
Zinc	ug/l	11.9	45
Polycyclic Aromatic Hydrocarbons (PAH)			
Anthracene	ug/l	0.4	0.02
- Benzo(a)pyrene	ug/l	0.1	< 0.01
- Benzo(b)fluoranthene	ug/l	$\Sigma = 0.03^{2}$	< 0.01
- Benzo(k)fluoranthene	ug/l	2=0.03-	<0.01
- Benzo(ghi)perylene	ug/l	$\Sigma = 0.002^2$	< 0.01
- Indeno(123-cd)perylene	ug/l	2=0.002	<0.01
Fluoranthene	ug/l	1	0.03
Naphthalene	ug/l	$1.2^{2} (2.4)$	< 0.01

MAC - Maximum Allowed Concentration

² AA – Average Annualised

* Freshwater EQS used as no Saltwater EQS for chromium.

Water Supply value used as no Saltwater EQS for selenium

- 7.3.3 The guidance levels used within the controlled waters assessment have been tabulated above and are detailed within Appendix 5.
- 7.3.4 The table shows elevated levels of leachable copper and zinc, however the total concentrations were found to be low at 71mg/kg for copper and 1100mg/kg for zinc (below residential with gardens guidance) and therefore are unlikely to be of a concern.

7.4 **Risk Evaluation**

7.4.1 A conceptual model has been formed to reflect the findings of the contamination risk assessment and the revised conceptual model, detailing the relevant pollutant linkages, is tabulated below:

Source	Potential Contaminants of Concern	Potential Pathways	Receptor Group	Risk								
Natural Alluvial soils	Heavy Metals (Copper & Zinc)	Surface runoff and drainage into the River Cree *2	Water EnvironmentGroundwaterSurface Water	Low								
^{*2} – Pathway exists only during the construction period												

7.5 Summary of Risk Evaluation

- 7.5.1 The above assessment identifies that the 'source pathway receptor' linkage potentially occurs with leachate from natural alluvial soils impacting upon the identified receptors. Therefore, it would be necessary to manage the risk at this location by either eliminating one of the links or by minimising the potential effects.
- 7.5.2 However the total concentrations were found to be low at 71mg/kg for copper and 1100mg/kg for zinc (below residential with gardens guidance) and therefore are unlikely to be of a concern.

8.0 MANAGEMENT OF CONTAMINATION

8.1 Remediation and Verification

- 8.1.1 The risk management framework set out in the Model Procedures for the Management of Land Contamination, CLR 11, ref. 9.18, is applicable to the redevelopment of sites that may be affected by contamination.
- 8.1.2 The risk management process set out in the Model Procedures has three main components:
 - Risk assessment
 - Options appraisal
 - Implementation
- 8.1.3 The results shows elevated levels of leachable copper and zinc, however the total concentrations were found to be low at 71mg/kg for copper and 1100mg/kg for zinc (below residential with gardens guidance) and therefore are unlikely to be of a concern.
- 8.1.4 To reduce the risk of leachate contaminating the River Cree it is suggested that any run off or drainage be directed away from the river and therefore any pumping of surface water from excavations into the river will need to be avoided.

8.2 Management of Unidentified Sources of Contamination

- 8.2.1 There is the possibility that sources of contamination may be present on the site, which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:
 - The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated. The material would need to be classified prior to disposal.
 - Short-term storage of the suspected material while undertaking verification testing for potential contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area.
 - Having a suitably experienced environmental engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

8.3 Consultation

- 8.3.1 During the development of a site, consultation may be required for a number of reasons with a number of regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required.
 - Local Authority. There may be a planning condition regarding contamination and consultation will be required with a designated Contaminated Land Officer within the Environmental Health Department. The Local Authority is generally concerned with human health risks. Some Authorities now require 'Completion Certificates' to be signed off following remediation works.
 - **SEPA.** Where a site is situated above an aquifer, within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.
- 8.3.2 Based on the results of any consultation, there may be specific remediation requirements imposed by one or more of the Authorities.

8.4 Risk Management During Site Works

- 8.4.1 During ground works, some simple measures may have to be put in place to mitigate the risk of any known or previously unidentified contamination affecting the site workers and the environs. The majority of the proposed measures represent good practice for the construction industry and include:
 - Informing the site workers of the contamination on site and the potential health effects from exposure.
 - Where appropriate, the provision of suitable Personal Protective Equipment (PPE) for workers who may be potentially impacted by working in areas of the contamination.
 - Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are discouraged from smoking, eating or drinking without washing their hands first.
 - Dust monitoring, and if necessary, suppression measures should be put into practice where contamination is becoming airborne.
 - Site drainage should be prevented from entering any adjacent watercourse, ref. 9.19.
- 8.4.2 Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations.

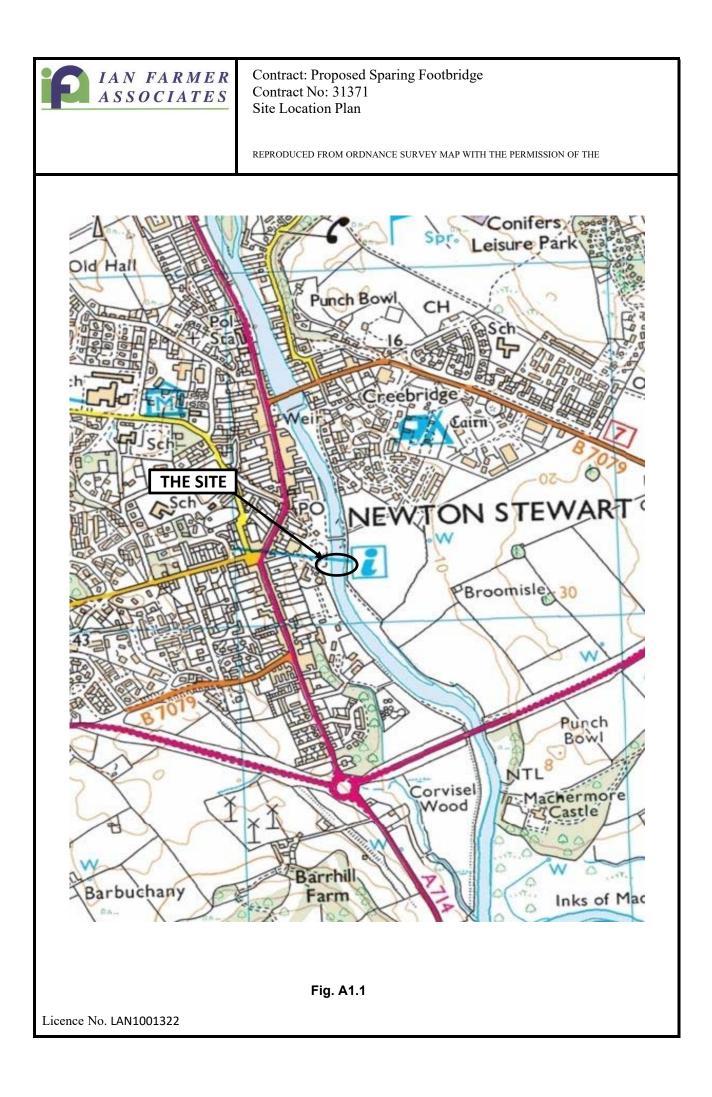
9.0 **REFERENCES**

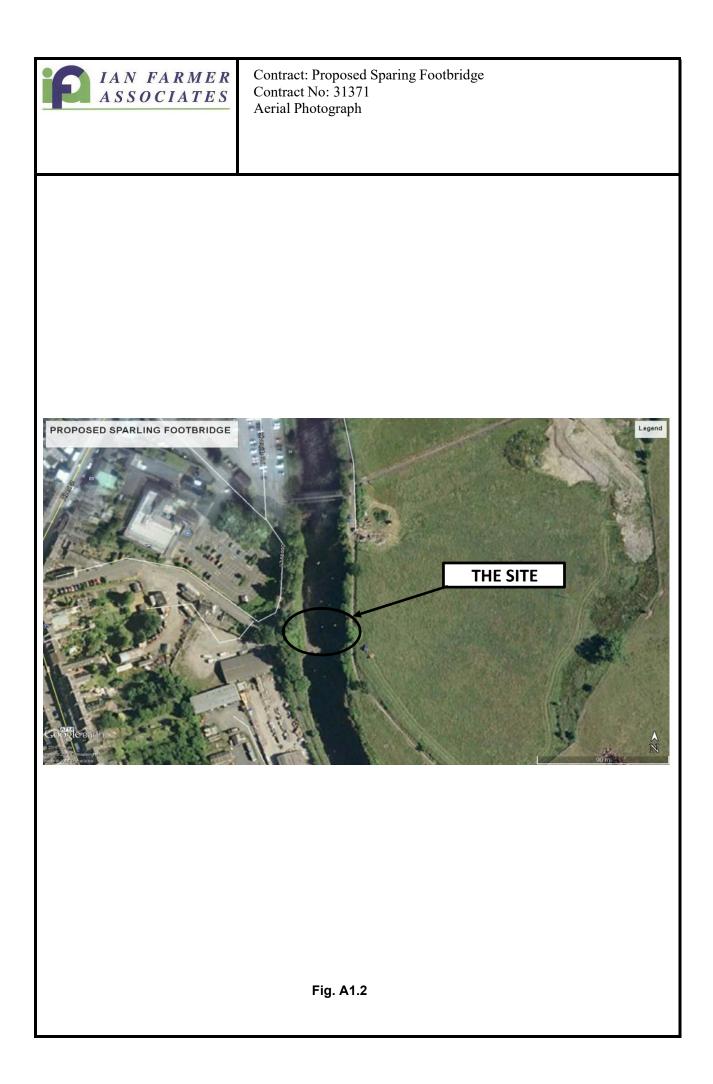
- 9.1 CLR 4, 'Sampling strategies for contaminated land'. Report by The Centre for Research into the Built Environment, the Nottingham Trent University, DoE, 1994.
- 9.2 British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2011+A1:2013.
- 9.3 British Standards Institute: BS 5930 'Code of practice for site investigations', BSi 2015.
- 9.4 ISO 1997, Part 2:2007, 'Eurocode 7 (incorporating corrigendum June 2010) Geotechnical Design Part 2, Ground Investigation and Design'.
- 9.5 ISO 22476 3:2005, 'Geotechnical Investigation and Testing Field Testing' Part 3, Standard Penetration Test.
- 9.6 British Standard 1377:1990, Part 9, 'Methods of Test for Soils for Civil Engineering Purposes'.
- 9.7 Health and Safety Executive, 'Health and Safety in Excavations', HSG 185, 1999.
- 9.8 The Environmental Protection Act, Part IIA, Section 78, 1990.
- 9.9 Environment Act 1995, Section 57, DoE 1995.
- 9.10 Environment Agency Science Report SC050021/SR3, 2008, 'Updated technical background to the CLEA model'.
- 9.11 Environment Agency Science Report SC050021, 2009, 'Contaminants in Soil: Updated Collation of Toxicological Data and Intake Values for Humans'.
- 9.12 The LQM/S4ULs for Human Health Risk Assessment, Nathanail P, McCaffery C, Gillett A, Ogden R, and Nathanail J, Land Quality Press, Nottingham, published 2015.
- 9.13 DEFRA SP1010: Development of Category 4 Screening Levels for the Assessment of Land Affected by Contamination, published March 2014.
- 9.14 Environment Agency Science Report SC050021/SR2 'Human health toxicological assessment of contaminants in soil'.
- 9.15 Generic Assessment Criteria for Human Health Risk Assessment, Nathanial CP, McCaffery C, Ashmore M, Cheng Y, Gillett A, Hooker P and Ogden RC, Land Quality Press, Nottingham, published November 2006.
- 9.16 Water Supply (Water Quality) Regulations 2000, Statutory Instrument 2000 No. 3184, Crown Copyright 2000.
- 9.17 Directive 2008/105/EC of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy, amending and

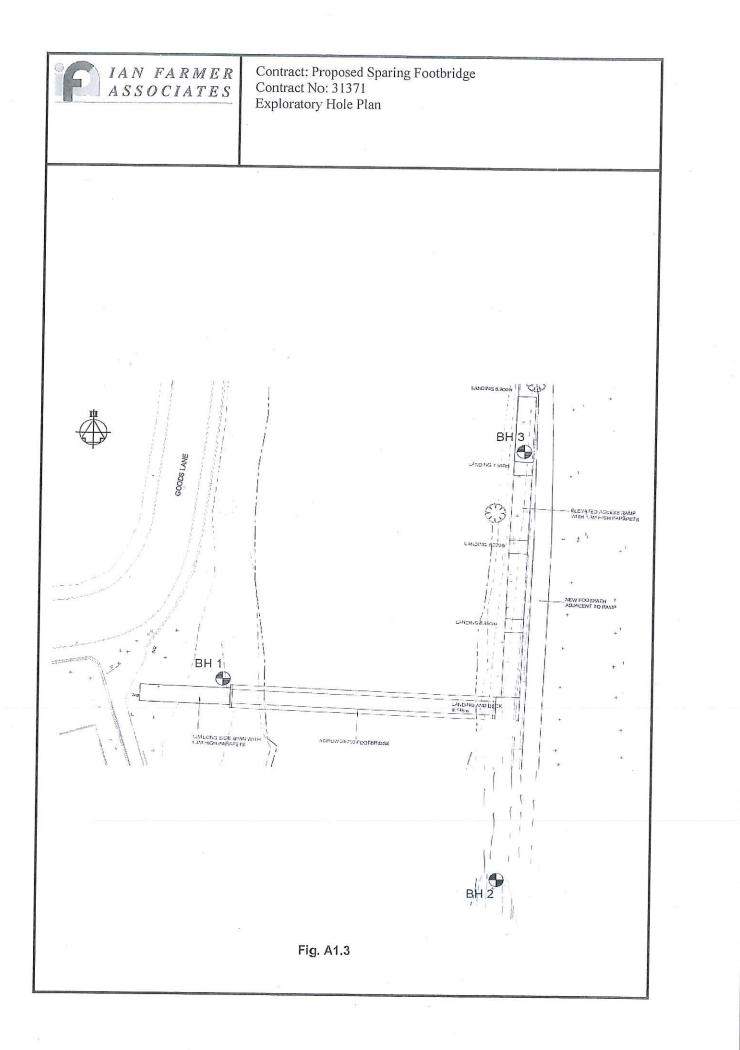
subsequently repealing Directives 82/176/EEC, 83/513/EEC, 84/491/EEC and 86/280/EEC and amending Directive 2000/60/EC, December 2008.

- 9.18 CLR 11, 'Model Procedures for the Management of Contaminated Land', DEFRA and Environment Agency, 2004.
- 9.19 Environment Agency / SEPA Pollution Prevention Guidelines, PPG5, 'Works In, Near, or Liable to Affect Watercourses'.
- 9.20 ISO 22475-1:2006, 'Geotechnical Investigation and Testing Sampling Methods and Groundwater Measurements' Part 1: Technical Principles for Execution.
- 9.21 ISO 14688 Part 1:2002 and Part 2:2004, 'Geotechnical Investigation and Testing Identification and Classification of Soil'.
- 9.22 CLR 2, 'Guidance on preliminary site inspection of contaminated land', Report by Applied Environmental, DoE 1994.
- 9.23 CLR 3 'Documentary Research on Industrial Sites', Report by RPS Consultants Ltd., DOE, 1994.
- 9.24 CLR 8, 'Potential contaminants for the assessment of contaminated land'. DEFRA/EA, March 2002.
- 9.25 Environment Agency, 2003, 'Review of the Fate and Transport of Selected Contaminants in the Soil Environment'. Draft Technical Report P5-079/TR1. Bristol: Environment Agency.

For and on behalf of Ian Farmer Associates (1998) Limited


S Corrigan


BSc (Hons)


Senior Engineering Geologist

P G Challinor

BSc(Hons), MSc, CEng, CGeol, CSci, MIMMM, FGS Director APPENDIX 1 DRAWINGS

Þ

APPENDIX 2

SITE WORK

APPENDIX 2

GENERAL NOTES ON SITE WORKS

A2.1 SITE WORK

A2.1.1 General

Site work is carried out in general accordance with the guidelines given in ISO 1997, 9.4 and BS 5930, ref. 9.3.

A2.1.2 Light Cable Percussion Boring

For routine soil exploration to depths in excess of 3m, the light cable percussion rig is generally employed for boring through soils and weak rocks, refs 9.3 and 9.4 It consists of a powered winch and tripod frame, with running wheels that are permanently attached so that the rig may be towed behind a suitable vehicle. The rig is towed into position and set up using its own winching system.

The locations of services are checked to make sure the borehole is not situated unacceptably near any services. Regardless of the proximity of services, a CAT scan is undertaken at the borehole location and a trial hole dug to 1.20m by hand.

Boreholes are advanced in soil by the percussive action of the cable tool. The force of the cylindrical tool as it is dropped a short distance cuts a plug of cohesive soil that is removed by the tool.

In non-cohesive soils, the borehole is advanced by a 'shell', otherwise known as a 'bailer' or 'sand pump', which incorporates a clack valve. Material is transferred into the shell and retained by the clack valve. The water level in a borehole is maintained above that in the surrounding granular soil to allow for temporary reductions in the head of water as the shell is withdrawn from the borehole. Water should flow from the borehole into the surrounding soil at all times to prevent 'piping' and loosening the soil at the base of the hole. The casing is always advanced with the borehole in granular soil so that material is drawn from the base rather than the borehole sides.

Obstructions to boring are overcome by fitting a serrated chiselling ring to the base of the percussion tool. For large obstructions, a heavy chisel with a hardened cutting edge may have to be used.

Disturbed samples are taken in polythene bags, jars or tubs that are sealed against air or water loss.

Undisturbed samples are generally taken in cohesive materials at changes in strata and at one metre intervals to 5 metres then at 1.5 metre intervals to the full depths of the borehole. The general purpose open-tube sampler is suitable for firm to stiff clays, but is often used to retrieve disturbed samples of weak rocks, soft or hard clay and also clayey sand or silts. This has been adopted for routine use, and usually consists of a 100mm internal diameter tube (U100), which is capable of taking soil samples up to 450mm in length. The undisturbed samples are sealed at each end using micro-crystalline wax to prevent drying.

Standard penetration tests are generally carried out in non-cohesive soils but also in stiff clays and soft rocks at frequencies similar to that of undisturbed sampling.

A2.2 IN-SITU TESTS

A2.2.1 Standard Penetration Test

The Standard Penetration Test is carried out in accordance with the proposals recommended by ISO 1997, ref. 9.4, BS 1377, Part 9, 1990 ref. 9.7.

The standard penetration test, **SPT**, covers the determination of the resistance of soils to the penetration of a split barrel sampler. A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.5kg hammer with a 760mm drop. The penetration resistance is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm through any disturbed ground at the bottom of the borehole. The number of blows to achieve the standard penetration of 300mm is reported as the 'N' value.

The test is generally carried out in fine soils, however, it may also be carried out in coarse granular soils, weak rocks and glacial tills using the same procedure as for the SPT but with a 50mm diameter, 60° apex solid cone replacing the split spoon sampler, **CPT**.

When attempting the standard penetration test in very dense material or weathered rocks it may be necessary to terminate the test before completion to prevent damage to the equipment. In these circumstances it is important to distinguish how the blow count relates to the penetration of the sampler. This may be achieved in the following manner:

- Where the seating drive has been completed, the test drive is terminated if 50 blows are reached before the full penetration of 300mm is achieved. The penetration for 50 blows is recorded and an approximate N value obtained by linear extrapolation of the number of blows for the partial test drive.
- If the seating drive of 150mm is not achieved within the first 25 blows, the penetration after 25 blows is recorded and the test drive then commenced.
- For tests in soft rocks, the test drive should be terminated after 100 blows where the penetration of 300mm has not been achieved.

The N-value obtained from the Standard Penetration Test may be used to assess the relative density of sands and gravels as follows:

Term	SPT N-Value : Blows/300mm Penetration
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	Over 50

A2.3 SAMPLES

A2.3.1 General

Samples have been recovered and stored in accordance with the guidelines given in ISO 22475-1:2006, ref. 9.47 and BS 5930, ref. 9.3.

The undisturbed samples recovered from the percussive sampler were of varying diameters depending upon the depth taken and the ground conditions encountered.

In accordance with EN ISO 22475, ref. 9.47, and BS 5930, ref. 9.3, the thick walled U100 sample is considered as a Class B sampling technique and will only produce Class 3 to 5 quality samples in accordance with EN 1997-2:2007, ref. 9.4. A similar assumption can be made from samples tested from the percussive window sample probing.

Laboratory strength and consolidation testing can only be carried out on Class 1 quality samples, which can be obtained from a Class A sampling technique, ref. 9.4. This is due to possible disturbance during sampling, giving a weaker strength in testing.

Therefore values for c_u and mv derived for use in this report can only be used as guidance and not used to determine the shear strength properties of the clay and is not used to give a descriptive strength in the borehole records.

- UT represents undisturbed 100mm diameter samples taken in thin walled sample tubes, the number of blows to obtain the sample also recorded.
- U represents undisturbed 100mm diameter sample, the number of blows to obtain the sample also recorded.
- U fail indicates undisturbed sample not recovered
- ES represents sample recovered in an amber jar, generally for environmental analysis
- HV represents Hand Vane test with equivalent undrained shear strength in kPa.
- PP represents Pocket Penetrometer test with equivalent undrained shear strength in kPa.
- CBR represents California Bearing Ratio test
- B represents large bulk disturbed samples
- D represents small disturbed sample
- W represents water sample
- ∇ represents water strike
- \checkmark represents level to which water rose

A2.4 DESCRIPTION OF SOILS

A2.4.1 General

The procedures and principles given in ISO 14688 Parts 1 and 2, ref. 9.48, supplemented by section 6 of BS 5930, ref. 9.3 have been used in the soil descriptions contained within this report.

BOREHOLE LOGS BH1 to BH3

			Contract Name		o No	wton S	Stewart		C	lient:		mfries	and (Sallow		ıncil		Bor	rehol	e ID:			
IAN FARMER ASSOCIATES						oridge, Newton Stewart er: Date Started: Logged By						Dumfries and Galloway Council /: Checked By: Status:								BH1			
A	SSOC	IATES	31371			8/05/20		R. Shept	herd)L			RAF	т	She	eet 1	of 1				
Cable	Percus	ssion	Easting:		North	ing:		Gi	round Leve			lant Use	d:		Print Da	te:		Sca		011			
	ehole L				30/06/2017)17			1:50							
Weather:					Termi	nation:							SPT	Hamr	ner: N/F	R, Ene	ergy Ra	tio: N	I/R				
	<u> </u>	& In Situ Test		Le	vel	Depth (m)				Stra	ata Det									Grour Water	ndwater Backfill/		
Depth 0.00	Sample ID) Te	est Result			Thickness)	Legen	d X	Cross ave	- 40	-	Strata					Candi			Strike	Installatio		
0.10 - 0.50	B2					0.10	• × • • • ×		Grass ove fine to coa (Topsoil)														
0.50 0.50 - 1.00	ES3 B4						• × • • • ×		Loose bec GRAVEL v														
							• × • • •×		coarse. Gr	ravel	l is fin	e to coai	rse su	ubangu				-					
- - 1.20	ES5	SPT(S) N=	=7 (6,4/3,2,1,1)				م م م م											-	1				
1.20 - 1.65	D6 B7		1 (0, 1/0,2,1,1)			(2.40)	• ~ X • ~ X • ~ X	0										-					
1.20							• • × • • • • ×	0										-					
1.85 - 2.00	D8 ES9	SPT(S) N=	=13 (2,3/3,3,4,3)				• × • • •×	0										-	2				
2.00 - 2.45 2.00	D10		,				• × • • • ×	0										-					
-						2.50	• × • • • ×	÷.	Dense bro	wns	siltv sa	andv GR	AVFI	_ with ^k	iah cob	ble co	ontent o	of					
2.75	D12						° × ° ° ×	0	subangula to coarse	ır sar	ndstor	ne. San	d is fi	ne to c	oarse. (Grave	l is fine	-					
- 3.00	ES15	SPT(S) N=					م × م م ×		siltstone.	Jund	angula	3001	Junu	54 110	aany a				3				
3.00 - 3.45	D13 B14	(3,22/18,7	, 4 ,4)			(1.70)	• × • • • ×	0,0															
3.00						,	• × • • • ×	0.0										F					
3.75	D16	057					• × • • • ×	0										-					
-4.00 - 4.45 4.00 - 4.50	D17 B18	SPT(S) 50 75mm/50) (25 for for 225mm)			4.20	• × • • •×												4				
4.00						(0.30)	• × • • • ×		Very dense content of	suba	angula	ar sands	tone.	Sand	is fine t	o coa	rse.	-			Awal Ima		
4.60	D19					4.50 4.60		-	Gravel is f sandstone				ingula	ar to su	brounde	ed inc	luding	Æ			* • • • •		
-									Very dense fine to coa	e da	rk gre	y black s	slightl subro	y sand	ly GRAV I includii	/EL. G na lim	Gravel in estone		5				
-												nd of Bor				5		-	J				
-																		-					
-																		-					
																		-	6				
																		-					
- - -																		-					
																		-					
																		-	7				
																		-					
-																		-					
																		-	8				
																		-					
-																		F					
_																		F	9				
																		ŀ					
																		F					
																		-					
_	ort 8 End	of Shift Obse	nations		orchal	o Diam-	tor		ing Diamata	r Ir	Dome	rke							10				
Date 18-05-2017	Time 00:00	Depth (m) C 4.60	ervations Casing (m) Water (i 4.00	m) De	orehole pth (m 4.60	e Diame I) Dia (r 15	nm) Dep	oth		m) I	Rema Inspec	rks: ction pit t	io 1.2	0m.	Piezom	eter i	nstallec	d to 4	.50m	۱.			
10-00-2017	00.00	4.00	4.00		4.00	15		.6	0 150	'													
																0' "							
	(Chiselling		+			nstallatio	n				(m) Casir		Sealed	(m) Time		Rose to		Rema	irks			
	(m) Du		marks		op (m) 0.00		(m) T 0 Pl	yp LA	IN 19	m)	4.30	4.	30			20	4.20	J					
					4.20	4.5	0 PIE		DME 19		IFA CF	P Template	e Is:	sue Nu	mber: 2	Issue	e Date: 2	20/06/	/16				
1		1				1			- 1	<u> </u>						- 540			-				

	AN FA	RMER	Contract Name: Sparling Foot	oridg					Client:	Dumfries a				E	Boreho	le ID: BH2	1
	SSOC	IATES	Contract Numbe	er:		Started:		Logged E		Checked I	Зу:	Stat		_			
			31371			9/05/20	J17	R. Sn Ground L	epherd	Diant Line	d.	Drim			Sheet 1	of 1	
	Percus ehole L		Easting:		Northi	ing:		Grouna L	evel.	Plant Use	u.		t Date: 30/06/20		Scale:	1:50	
Veather:	211010 L	-9	1		Termi	nation:				1	SPT F		N/R, Ene		: N/R		
	Samples	& In Situ Tes	ting						Strata	a Details			,			Groun	dwater
Depth	Sample ID	Te	est Result	Le (mA		Depth (m) Thickness)	Legend	I		Strata	Descrip	otion				Water Strike	Backfill Installatio
0.00 0.10 - 0.50 0.50 0.50 - 1.00	ES1 B2 ES3 B4					0.20 (0.90)	a	to med subrou Grey b with lov fine to	lium. Grav Inded incl Irown mot w cobble coarse. G	k clayey sligh vel is fine to i uding sandst tled brown g content of su Gravel is fine uding sandst	nediun one. (T reen cla bangul to coar	n subang Topsoil) ayey ver lar sands rse suba	ular to y sandy G stone. Sau ngular to	BRAVEL	1		
1.20 1.20 - 1.65 1.20 - 1.70 1.20 1.80	ES5 D6 B7 W8	SPT(S) N: (11,12/12,				1.10	a X 2 a X a X 2 a X 2 a X a X 2	silty/sli low col coarse	ghtly clay bble conte . Gravel i	oming mediu rey sandy be ent of subang s fine to coar one and coal	coming gular sa se sub	very sa	ndy GRA\ e. Sand is	/EL with fine to	- " 		
1.80 1.85 2.00 - 2.50 2.00	008 D9 B10	SPT(C) N	=22 (6,6/6,6,5,5)			(1.80)									2		
2.70 2.75 3.00 - 3.40 3.00 - 3.50 3.00	EW13 D11 D12 B14	SPT(S) N= 295mm)	=50 (3,9/50 for			2.90	4 X 4 X	Gravel	is fine to	dense multic medium sub stone, coal, s	angula	r to subr	ounded ir		- 3		ing Auto Maria
3.75 4.00 - 4.50 4.00	D15 B16	SPT(C) N: (9,14/10,8				(2.10)									- 4		
4.75 5.00	D17	SPT(C) 50 75mm/50) (25 for for 225mm)			5.00		*. . • *.		End of Bor	ehole at	t 5.000m			- 5		
															- 6		
															- 7		
															- 8		
															- - - - - - - - -		
	art & End o	of Shift Obse	ervations	B	orehole	e Diame	ter C	asing Dian	()	emarks:					 10		
Date 9-05-2017	Time 00:00	<u>Depth (m) C</u> 5.00	Casing (m) Water (r 5.00 1.40		epth (m 5.00) <u>Dia (n</u> 150			150	spection pit t			Water Stri	kes			
		Chiselling		+-			nstallatio			rike (m) Casir 1.80 1.5		ealed (m) 2.30	Time (mins 20) Rose to (n 1.70	n) Rema	arks	
		ration Rer 2:00	marks		op (m) 0.00	Base 3.2		ype Dia _AIN	a (mm) 19	2.70 2.3		2.00	20	2.60			
		0:20			3.20	3.50		ZOME	19	1	1			1	1		

		DMED	Contract Name Sparling Foo		e, Ne	wton S	stewart		Client:		es and (ay Council	E	Boreho		
	SSOC	RMER IATES	Contract Numl 31371	per:		Started: 2/05/20		Logged B	y: epherd		ked By:	S	tatus: DRAF	Ŧ		BH3	
Cabla	Percus		Easting:		Z. North			Ground Le		Plant	llsed.	P	rint Date:	<u> </u>	Sheet 1 Scale:	of 1	
	ehole L		Lasting.		North	ing.			CVCI.	r iant	0300.	ľ	30/06/20		oulo.	1:50	
Veather:		<u> </u>	1		Termi	nation:	I			I	SPT	ergy Ratio	: N/R				
	Samples	& In Situ Tes	ting		. 1		1		Stra	ta Details							dwater
Depth	Sample ID	Te	est Result	Lev (mA	vel OD)(Depth (m) Thickness)	Legend				trata Desc					Water Strike	Backfill Installatio
0.20 0.60	ES1 ES2					0.10 (0.50) 0.60		to coars subang Black d coarse.	se. Grav jular inc lark brov . Gravel	vel is fine f luding san wn clayey	to mediur idstone (gravelly medium s	m subro Topsoil) SAND. subangu	Sand is fine ular to subro	to			
1.20 1.20 - 1.70 1.20	ES3 B4	SPT(C) 50 80mm/50) (25 for for 235mm)			(1.80)	a x * * * * * * * * * * * * * * * * * *	Very de cobble	ense dar content	k brown s	andy GR	RAVEL w dstone.	vith low to mo Gravel is	/ edium	- - - - - -		
2.00		SPT(C) 50 125mm/50) (25 for) for 295mm)			2.40	a x • • • × • • × • • × • • × • • • × • • • ×)			Developing	-1.0.400			- 2		
										End of	Borehole	at 2.400	lm		- 3		
															-		
															-4		
															- 5		
															-		
															-6		
															- 7		
															-		
															8		
															- 9		
															-		
	art 8 []	of Shift Obse	anyations		arob-'	e Diame	ter	asing Diam	eter I-	oma-li-					- 10		
Date 22-05-2017			Casing (m) Water 1.90	(m) De			nm) Dep	th (m) Dia	()	Remarks: nspection	pit dug to	o 1.20m	L.				
										Strike (m)	Casing (m)	Sealed (Water Stri		Rem	arke	
1.20 1.	(m) Du 20 0	1:15	marks	Тс	op (m)		nstallatio (m) T		(mm)		zaany (III)		0	10000 IU (II		ano	
2.10 2.	40 0	1:00							11	A CP Tem	plate Is	sue Num	ber: 2 Issue	e Date: 20/	06/16		

PIEZOMETER GROUNDWATER READINGS

BH1 & BH2

IAN FARMER ASSOCIATES										Monitoring Results							
	Contract No:			31	371												
Co	ontract Name:		SPARLING		GE NEWTON	N STWEART											
	Date:				6/2017												
				O ₂ % v/v				CO ₂ % v/v		ND		CH ₄ % v/v		ND			
Background	Readings:					Atmosphe Atmosphe				1				1010mb 1010mb			
	O ₂ % v/v				:O ₂ v/v	с	H ₄ v/v	c	;O pm	H₂S ppm		VOCs ppm		Gas Flow Rate (I/hr)	Base of Pipe		Comments
Hole No:	Time (hh:mm)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Steady	mBGL	mBGL	
BH1															3.19		
BH2															0.84		
				-													
				+							<u> </u>						
Remarks:		1	1	1	1	1		1	1	1	1		1	1	1	1	
					N	ID = Below dete	ection limit of in	nstrument. NR	= Not Recorde	d.							
																	1
F	Readings Take	n By:		RS]
	Checked B														Dec	cember 201	

APPENDIX 3

LABORATORY TESTS

APPENDIX 3

GENERAL NOTES ON LABORATORY TESTS ON SOILS

A3.1 GENERAL

- A3.1.1 Where applicable all tests are carried out in accordance with the relevant British Standard. The laboratory test procedures are given in the laboratory test reports.
- A3.1.2 Any discussion in this report is based on the values and results obtained from the appropriate tests. Due allowance should be made, when considering any result in isolation, of the possible inaccuracy of any such individual result. Details of the accuracy of results are included in this section, where applicable.

A3.2 SOIL CLASSIFICATION

- A3.2.1 Classification of soils is usually undertaken by means of the Plasticity Classification Chart, sometimes called the A-Line Chart. This is graphical plot of PI against LL with the A-Line defined as PI = 0.73(LL 20).
- A3.2.2 This line is defined from experimental evidence and does not represent a well-defined boundary between soil types, but forms a useful reference datum. When the values of LL and PI for inorganic clays are plotted on the chart they generally lie just above the A-Line in a narrow band parallel to it, while silts and organic clays plot below this line.
- A3.2.3 Clays and silts are divided into five zones of plasticity:

Low Plasticity (L)	LL less than 35
Intermediate Plasticity (I)	LL between 35 and 50
High Plasticity (H)	LL between 50 and 70
Very High Plasticity (V)	LL between 70 and 90
Extremely High Plasticity (E)	LL greater than 90

A3.2.4 In general, clays of high plasticity are likely to have a lower permeability, are more compressible and consolidate over a longer period of time under load than clays of low plasticity. Clays of high plasticity are more difficult to compact as fill material.

TEST REPORT 31371/1

Unit 4 Faraday Close, Pattinson North Industrial Estate, Washington, Tyne & Wear, NE38 8QJ Tel. 0191 482 8500 Fax. 0191 482 8520 Email. washington@ianfarmer.co.uk Internet. www.ianfarmer.co.uk

F.A.O.

	Test Report - 31371 / 1
Site:	Sparling Footbridge, Newton Stewart
Job Number:	31371
Originating Client:	Dumfries and Galloway Council 31371
Originating Reference:	31371
Date Sampled:	Not Given
Date Scheduled:	31/05/2017
Date Testing Started:	13/06/2017
Date Testing Finished:	21/06/2017
Remarks:	

Authorised By:

7. CW

Paul Cathcart Quality Manager

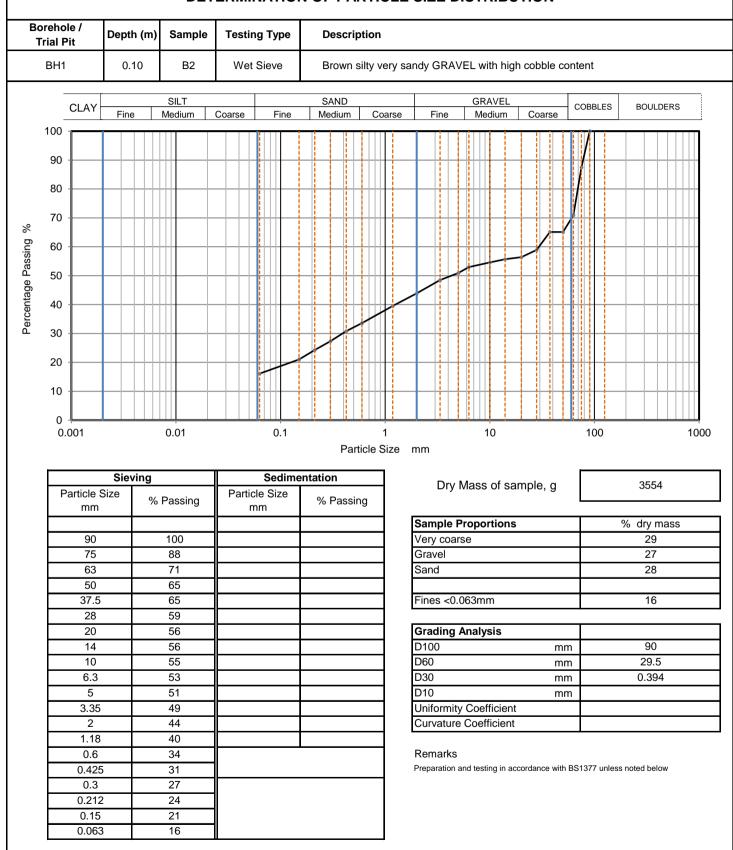
Date: 21/06/2017

lan Farmer Associates (1998) Limited. Registered in England and Wales No. 3661447 Registered Office: Unit 4 Faraday Close, Pattinson North Industrial Estate, Washington, NE38 8QJ Offices in: Coventry (024) 7630 3422. Harpenden, Herts. (01582) 460 018. Llanelli (01554) 566 566. Motherwell (01698) 230 231. Newcastle upon Tyne (0191) 482 8500. Truro (01827) 261 775. Warrington (01925) 855 440.

Page. 1

Laboratory Test Report 31371 / 1

Job Number:


Page: 2

31371

Client: Dumfries and Galloway Council

Sparling Footbridge, Newton Stewart

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Method of Preparation: BS 1377:Part 1:1990, clause 7 3 Initial preparation BS 1377:Part 1:1990, clause 7.4.5 Preparation of particle size tests

Method of Test: BS1377:Part 2:1990, clause 9.2 Determination of particle size distribution by wet sieving method

Laboratory Test Report 31371 / 1

Site: Sparling Footbridge, Newton Stewart

Job Number: 31371

Page: 3

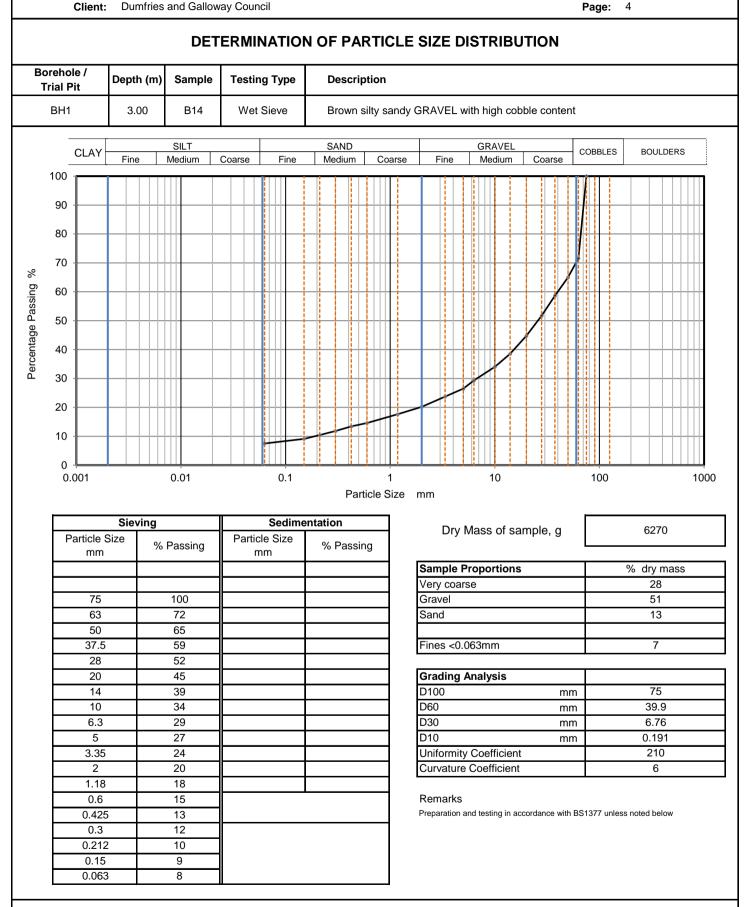
Client: Dumfries and Galloway Council

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth (m) **Testing Type** Description Sample **Trial Pit** BH1 1.20 B7 Wet Sieve Brown silty very sandy GRAVEL SILT SAND GRAVEL COBBLES BOULDERS CLAY Fine Coarse Medium Coarse Fine Medium Coarse Fine Medium 100 90 80 70 % Percentage Passing 60 50 40 30 20 10 0 0.01 10 0.001 0.1 100 1000 1 Particle Size mm Sedimentation Sieving 10817 Dry Mass of sample, g Particle Size Particle Size % Passing % Passing mm mm Sample Proportions % dry mass Very coarse 0 Gravel 55 63 100 Sand 26 50 94 37.5 83 Fines <0.063mm 18 28 79 Grading Analysis 20 74 14 68 D100 mm 63 10 63 D60 8.39 mm 6.3 56 D30 0.39 mm 5 53 D10 mm 3.35 Uniformity Coefficient 50 45 Curvature Coefficient 2 39 1.18 33 Remarks 0.6 Preparation and testing in accordance with BS1377 unless noted below 0.425 31 28 0.3 0.212 24 0.15 22 0.063 18

Method of Preparation: BS 1377:Part 1:1990, clause 7 3 Initial preparation BS 1377:Part 1:1990, clause 7.4.5 Preparation of particle size tests

Method of Test: BS1377:Part 2:1990, clause 9.2 Determination of particle size distribution by wet sieving method

Laboratory Test Report


31371 / 1

Job Number: 31371

4

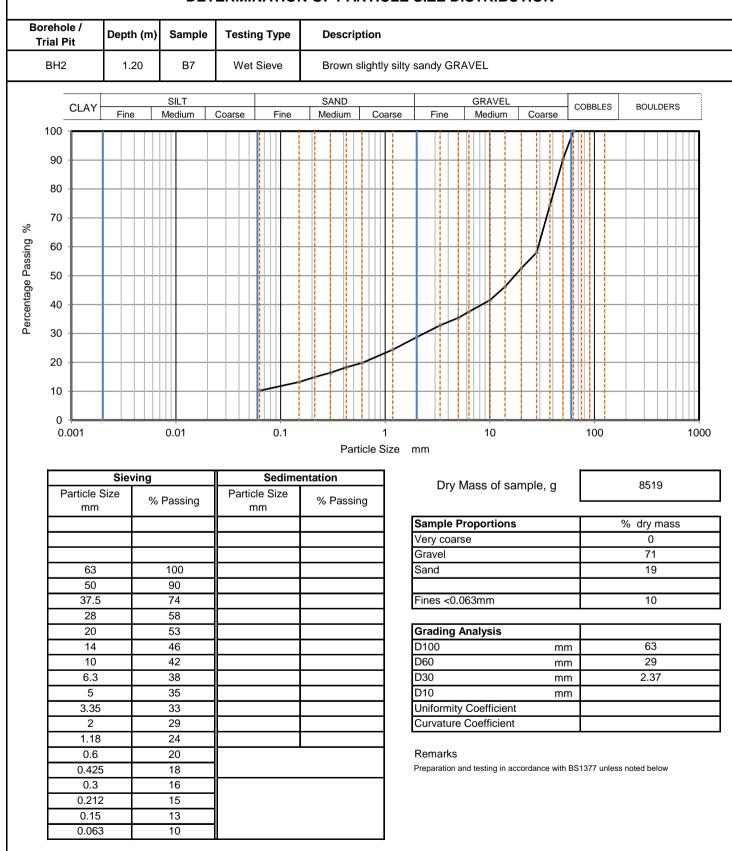
Client: Dumfries and Galloway Council

Sparling Footbridge, Newton Stewart

Method of Preparation: BS 1377:Part 1:1990, clause 7 3 Initial preparation BS 1377:Part 1:1990, clause 7.4.5 Preparation of particle size tests

Laboratory Test Report

31371 / 1


Job Number:

Page: 5

31371

Sparling Footbridge, Newton Stewart Client: Dumfries and Galloway Council

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Method of Preparation: BS 1377:Part 1:1990, clause 7 3 Initial preparation BS 1377:Part 1:1990, clause 7.4.5 Preparation of particle size tests

Method of Test: BS1377:Part 2:1990, clause 9.2 Determination of particle size distribution by wet sieving method

Laboratory Test Report 31371 / 1

Sparling Footbridge, Newton Stewart

Job Number: 31371

Page: 6

Client: Dumfries and Galloway Council

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Borehole / Depth (m) Testing Type Description Sample **Trial Pit** BH2 2.00 B10 Wet Sieve Brown slightly clayey very sandy GRAVEL with low cobble content SILT SAND GRAVEL COBBLES BOUI DERS CLAY Fine Fine Coarse Medium Coarse Medium Coarse Fine Medium 100 90 80 70 % Percentage Passing 60 50 40 30 20 10 0 0.01 10 0.001 0.1 100 1000 1 Particle Size mm Sieving Sedimentation 9326 Dry Mass of sample, g Particle Size Particle Size % Passing % Passing mm mm Sample Proportions % dry mass Very coarse 7 75 100 Gravel 54 63 93 Sand 25 50 93 37.5 82 Fines <0.063mm 14 28 72 Grading Analysis 20 65 14 57 D100 mm 75 10 54 D60 15.9 mm 6.3 50 D30 0.928 mm 5 48 D10 mm 3.35 45 Uniformity Coefficient 39 Curvature Coefficient 2 1.18 33 25 Remarks 0.6 Preparation and testing in accordance with BS1377 unless noted below 0.425 23 21 0.3 0.212 19 0.15 17 0.063 14

Method of Preparation: BS 1377:Part 1:1990, clause 7 3 Initial preparation BS 1377:Part 1:1990, clause 7.4.5 Preparation of particle size tests

Method of Test: BS1377:Part 2:1990, clause 9.2 Determination of particle size distribution by wet sieving method

Test Report - 31371 / 1

Site: Sparling Footbridge, Newton Stewart

Job Number: 31371

Originating Client: Dumfries and Galloway Council

All opinions and interpretations contained within this report are outside of our Scope of Accreditation.

This test report shall not be reproduced, except in full and only with the written permission of Ian Farmer Associates Ltd

Date: 21/06/2017

CERTIFICATE OF ANALYSIS 17-01408

Certificate Number 17-01408

Client	lan Farmer Associates
	4 Faraday Close
	District 15
	Pattinson North Industrial Est
	Washington
	Tyne & Wear
	NE38 8QJ

- Our Reference 17-01408
- Client Reference 31371
 - Order No 92376
 - Contract Title Sparling Footbridge
 - Description 4 Soil samples, 1 Water sample.
 - Date Received 01-Jun-17
 - Date Started 01-Jun-17
- Date Completed 07-Jun-17
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 10725 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

07-Jun-17

Summary of Chemical Analysis Soil Samples

Our Ref 17-01408 Client Ref 31371 Contract Title Sparling Footbridge

			Lab No	1182167	1182168	1182170	1182171
		S	ample ID	BH1	BH1	BH2	BH3
			Depth	1.20	1.85	3.75	1.20
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Samp	ling Date	18/05/17	18/05/17	19/05/17	22/05/17
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Inorganics							
рН	DETSC 2008#			7.6	7.9	8.1	7.8
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	13	27	29	16

Summary of Chemical Analysis Water Samples

Our Ref 17-01408 Client Ref 31371 Contract Title Sparling Footbridge

contract intic	Spanning i Ootbridge			_	
				Lab No	1182169
			Sa	ample ID	BH2
				Depth	1.80
				Other ID	
			Sam	ple Type	WATER
			Sampl	ing Date	19/05/17
			Sampl	ing Time	n/s
Test		Method	LOD	Units	
Inorganics					
рН		DETSC 2008			6.2
Sulphate as SO4		DETSC 2055	0.1	mg/l	8.5

Information in Support of the Analytical Results

Our Ref 17-01408 Client Ref 31371 Contract Sparling Footbridge

Containers Received & Deviating Samples

	Date			container for
Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
BH1 1.20 SOIL	18/05/17	PT 1L	pH + Conductivity (7 days)	
BH1 1.85 SOIL	18/05/17	PT 1L	pH + Conductivity (7 days)	
BH2 1.80 WATER	19/05/17	PB 1L	pH/Cond/TDS (7 days)	
BH2 3.75 SOIL	19/05/17	PT 1L	pH + Conductivity (7 days)	
BH3 1.20 SOIL	22/05/17	PT 1L	pH + Conductivity (7 days)	
	BH1 1.20 SOIL BH1 1.85 SOIL BH2 1.80 WATER BH2 3.75 SOIL	BH1 1.20 SOIL 18/05/17 BH1 1.85 SOIL 18/05/17 BH2 1.80 WATER 19/05/17 BH2 3.75 SOIL 19/05/17 BH3 1.20 SOIL 22/05/17	BH1 1.20 SOIL 18/05/17 PT 1L BH1 1.85 SOIL 18/05/17 PT 1L BH2 1.80 WATER 19/05/17 PB 1L BH2 3.75 SOIL 19/05/17 PT 1L BH3 1.20 SOIL 22/05/17 PT 1L	BH1 1.20 SOIL 18/05/17 PT 1L pH + Conductivity (7 days) BH1 1.85 SOIL 18/05/17 PT 1L pH + Conductivity (7 days) BH2 1.80 WATER 19/05/17 PB 1L pH/Cond/TDS (7 days) BH2 3.75 SOIL 19/05/17 PT 1L pH + Conductivity (7 days) BH3 1.20 SOIL 22/05/17 PT 1L pH + Conductivity (7 days)

Key: P-Plastic T-Tub B-Bottle

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months **APPENDIX 4**

CHEMICAL TESTS

CERTIFICATE OF ANALYSIS 17-01474

Certificate Number 17-01474

Client	Ian Farmer Associates
	4 Faraday Close
	District 15
	Pattinson North Industrial Est
	Washington
	Tyne & Wear
	NE38 8QJ

- Our Reference 17-01474
- Client Reference 31371
 - Order No 92378
 - Contract Title Sparling Footbridge
 - Description 4 Soil samples, 1 Leachate sample.
 - Date Received 02-Jun-17
 - Date Started 02-Jun-17
- Date Completed 08-Jun-17
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 10725 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

08-Jun-17

Summary of Chemical Analysis Matrix Descriptions

Our Ref 17-01474 Client Ref 31371 Contract Title Sparling Footbridge

Sample ID	Depth	Lab No	Completed	Matrix Description
BH1	0.5	1182456	08/06/2017	Dark brown gravelly, sandy CLAY including odd rootlets
BH2	0.00-0.20	1182457	08/06/2017	Dark brown gravelly, sandy CLAY including numerous rootlets
BH2	1.2	1182458	08/06/2017	Dark brown gravelly, very sandy CLAY including odd rootlets
BH3	0.6	1182459	08/06/2017	Dark brown gravelly, very clayey SAND including odd rootlets

Summary of Chemical Analysis Soil Samples

Our Ref 17-01474 Client Ref 31371 Contract Title Sparling Footbridge

			Lab No	1182456	1182457	1182458	1182459
		Sa	ample ID	BH1	BH2	BH2	BH3
			Depth	0.50	0.00-0.20	1.20	0.60
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
			ing Date	18/05/17	19/05/17	19/05/17	22/05/17
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units		÷	·	
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	18	18	14	12
Cadmium	DETSC 2301#	0.1	mg/kg	8.1	0.6	0.4	0.2
Chromium	DETSC 2301#	0.15	mg/kg	46	52	79	69
Copper	DETSC 2301#	0.2	mg/kg	71	28	38	26
Lead	DETSC 2301#	0.3	mg/kg	270	62	37	27
Mercury	DETSC 2325#	0.05	mg/kg	5.2	0.12	0.25	< 0.05
Nickel	DETSC 2301#	1	mg/kg	56	43	57	49
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	1100	120	120	96
Inorganics							
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.7	0.4	< 0.1	< 0.1
PAHs							
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6		< 1.6	

Summary of Chemical Analysis Leachate Samples

Our Ref 17-01474 Client Ref 31371 Contract Title Sparling Footbridge

Contract litle Sparling Footbr	idge		-	
			Lab No	1182460
		Sa	mple ID	BH3
			Depth	0.60
		(Other ID	
		Sam	ole Type	LEACHATE
		Sampli	ing Date	22/05/17
		Sampli	ng Time	n/s
Test	Method	LOD	Units	
Preparation				
NRA Leachate Preparation	DETS 036*			Y
Metals				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.4
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.05
Chromium, Dissolved	DETSC 2306	0.25	ug/l	3.3
Copper, Dissolved	DETSC 2306	0.4	ug/l	6.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.65
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	13
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	45
Inorganics				
Cyanide, Total	DETSC 2130	40	ug/l	< 40
PAHs				
Acenaphthene	DETSC 3304	0.01	ug/l	0.02
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	0.02
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(g,h,i)perylene	DETSC 3304*	0.01	ug/l	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.03
Fluorene	DETSC 3304	0.01	ug/l	0.02
Indeno(1,2,3-c,d)pyrene	DETSC 3304*	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.01	ug/l	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.07
Pyrene	DETSC 3304	0.01	ug/l	0.03
PAH Total	DETSC 3304	0.04	ug/l	0.21

Inappropriate

Information in Support of the Analytical Results

Our Ref 17-01474 Client Ref 31371 Contract Sparling Footbridge

Containers Received & Deviating Samples

	Date			container for
Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
BH1 0.50 SOIL	18/05/17	GJ 250ml, GJ 60ml, PT 1L	Naphthalene (14 days), PAH FID (14 days)	
BH2 0.00-0.20 SOIL	19/05/17	GJ 250ml, GJ 60ml, PT 1L		
BH2 1.20 SOIL	19/05/17	GJ 250ml, GJ 60ml, PT 1L		
BH3 0.60 SOIL	22/05/17	GJ 250ml x2, PT 1L		
BH3 0.60 LEACHATE	22/05/17	GJ 250ml x2, PT 1L		
	BH1 0.50 SOIL BH2 0.00-0.20 SOIL BH2 1.20 SOIL BH3 0.60 SOIL	Sample ID Sampled BH1 0.50 SOIL 18/05/17 BH2 0.00-0.20 SOIL 19/05/17 BH2 1.20 SOIL 19/05/17 BH3 0.60 SOIL 22/05/17	Sample ID Sampled Containers Received BH1 0.50 SOIL 18/05/17 GJ 250ml, GJ 60ml, PT 1L BH2 0.00-0.20 SOIL 19/05/17 GJ 250ml, GJ 60ml, PT 1L BH2 1.20 SOIL 19/05/17 GJ 250ml, GJ 60ml, PT 1L BH3 0.60 SOIL 22/05/17 GJ 250ml, GJ 60ml, PT 1L	Sample ID Sampled Containers Received Holding time exceeded for tests BH1 0.50 SOIL 18/05/17 GJ 250ml, GJ 60ml, PT 1L Naphthalene (14 days), PAH FID (14 days) BH2 0.00-0.20 SOIL 19/05/17 GJ 250ml, GJ 60ml, PT 1L Naphthalene (14 days), PAH FID (14 days) BH2 1.20 SOIL 19/05/17 GJ 250ml, GJ 60ml, PT 1L Image: Containers Received BH3 0.60 SOIL 22/05/17 GJ 250ml, GJ 60ml, PT 1L Image: Containers Received

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

*Ib***ETS**

Appendix A - Details of Analysis

	. .		Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted		MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aromatic C10-C12 Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072			10				
DETSC 3072 DETSC 3072	Aromatic C12-C16 Aromatic C16-C21	mg/kg	0.6	As Received As Received	No	Yes	Yes
DETSC 3072 DETSC 3072		mg/kg			No	Yes	Yes
	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
			0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01				
DETS 062 DETS 062	m+p Xylene o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062 DETS 062 DETSC 3311	m+p Xylene o Xylene C10-C24 Diesel Range Organics (DRO)	mg/kg mg/kg	0.01 10	As Received As Received	No No	Yes Yes	Yes Yes
DETS 062 DETS 062	m+p Xylene o Xylene	mg/kg	0.01	As Received	No	Yes	Yes

*Iib***ETS**

Appendix A - Details of Analysis

		_	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

APPENDIX 5

CONTAMINATION ASSESSMENT

APPENDIX 5

GENERAL NOTES ON CONTAMINATION ASSESSMENT

A5.1 STATUTORY FRAMEWORK AND DEFINITIONS

A5.1.1 The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref. 9.25, which was introduced by the Environment Act 1995, ref. 9.26;

'Land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that -

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused.'
- A5.1.2 The UK guidance on the assessment of contaminated has developed as a direct result of the introduction of these two Acts. The technical guidance supporting the new legislation has been summarised in a number of key documents collectively known as the Contaminated Land Reports (CLRs), a proposed series of twelve documents. Seven were originally published in March 1994, four more were published in April 2002, while the last remaining guidance document, CLR 11, ref. 9.43 was published in 2004. In 2008 CLR reports 7 to 10 were withdrawn by DEFRA and the Environment Agency and updated version of CLR 9 and 10 were produced in the form of Science Reports SR2, ref. 9.33 and SR3, ref. 9.27.
- A5.1.3 In establishing whether a site fulfils the statutory definition of 'contaminated land' it is necessary to identify, whether a pollutant linkage exists in respect of the land in question and whether the pollutant linkage:
 - is resulting in significant harm being caused to the receptor in the pollutant linkage,
 - presents a significant possibility of significant harm being caused to that receptor,
 - is resulting in the pollution of the controlled waters which constitute the receptor, or
 - is likely to result in such pollution.
- A5.1.4 A '*pollutant linkage*' may be defined as the link between a contaminant '*source*' and a '*receptor*' by means of a '*pathway*'.

A5.2 ASSESSMENT METHODOLOGY

A5.2.1 The guidance proposes a four-stage assessment process for identifying potential pollutant linkages on a site. These stages are set out in the table below:

No.	Process	Description
1	Hazard Identification	Establishing contaminant sources, pathways and receptors (the conceptual model).
2	Hazard Assessment	Analysing the potential for unacceptable risks (what linkages could be present, what could be the effects).
3	Risk Estimation	Trying to establish the magnitude and probability of the possible consequences (what degree of harm might result and to what receptors, and how likely is it).
4	Risk Evaluation	Deciding whether the risk is unacceptable.

- A5.2.2 Stages 1 and 2 develop a '*conceptual model*' based upon information collated from desk based studies, and frequently a walkover of the site. The walkover survey should be conducted in general accordance with CLR 2, ref. 9.50. The formation of a conceptual model is an iterative process and as such, it should be updated and refined throughout each stage of the project to reflect any additional information obtained.
- A5.2.3 The extent of the desk studies and enquiries to be conducted should be in general accordance with CLR 3, ref. 9.51. The information from these enquiries is presented in a desk study report with recommendations, if necessary, for further work based upon the conceptual model. CLR 8, ref. 9.52, together with specific DoE 'Industry Profiles' provides guidance on the nature of contaminants relating to specific industrial processes. Although CLR 8 has been withdrawn, no replacement guidance has been published that lists the contaminants likely to be present on contaminated sites and as such the guidance relating to this issue of CLR 8 is considered to still be relevant.
- A5.2.4 If potential pollutant linkages are identified within the conceptual model, a Phase 2 site investigation and report will be recommended. The investigation should be planned in general accordance with CLR 4, ref. 9.1. The number of exploratory holes and samples collected for analysis should be consistent with the size of the site and the level of risk envisaged. This will enable a contamination risk assessment to be conducted, at which point the conceptual model can be updated and relevant pollutant linkages can be identified.
- A5.2.5 A two-stage investigation may be more appropriate where time constraints are less of an issue. The first stage investigation being conducted as an initial assessment for the presence of potential sources, a second being a more refined investigation to delineate wherever possible the extent of the identified contamination.
- A5.2.6 All site works should be in general accordance with the British Standards, BS 5930:1999, ref. 9.3, ISO 1997, ref. 9.4 and BS 10175:2001, ref. 9.2.
- A5.2.7 The generic contamination risk assessment screens the results of the chemical analysis against generic guidance values which are dependent on the proposed end-use of the development.
- A5.2.8 The end-use may be defined as one of the following ref. 9.31;
 - Residential with homegrown produce domestic low rise and low density housing with gardens where vegetable may be grown for home consumption
 - Residential without homegrown produce domestic low density and low density housing where no gardens are present.
 - Allotments specific areas where vegetables are grown for home consumption.
 - Public open space in close proximity to residential housing includes the predominantly grassed area adjacent to high density housing and the central green area around which houses are developed. This land-use includes the

smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting.

- Public open space in use as general parkland provided for recreational use and may be used for family visits and picnics, children's play area, sports grounds and dig walking.
- Commercial industrial premises where there is limited exposure to soil.

Standard	Oral Ro	utes		Dermal	Routes	Inhalat	ion Routes	•	
Land Use	Direct soil & dust ingestion	Consumption of homegrown produce	Soil attached to homegrown produce	Indoor	Outdoor	Indoor dust	Outdoor dust	Indoor vapour	Outdoo vapour
Residential with homegrown produce	\checkmark	\checkmark	\checkmark	~	~	~	~	~	~
Residential without homegrown produce	\checkmark	х	х	~	~	~	~	~	~
Allotments	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark
Public open space – adjacent to dwellings	~	х	Х	~	~	~	~	х	~
Public open space – parkland	\checkmark	Х	Х	Х	~	Х	~	Х	~
Commercial	\checkmark	Х	Х	\checkmark	Х	\checkmark	X	\checkmark	X

A5.2.9 Exposure pathways for each type of end-use are given below:

- A5.2.10 Soils will be compared to Suitable 4 Use Levels (S4ULs) published by LQM ref. 9.29 Assessment Criteria. Where no S4UL is available, the assessment criteria (AC) are generated using the Contaminated Land Exposure Assessment (CLEA) Software Version 1.06, ref. 9.29. Toxicological and physico-chemical/fate and transport data used to generate the AC has been derived from a hierarchy of data sources as follows:
 - 1. Environment Agency or Department of Environment Food and Rural Affairs

(DEFRA) documents;

- 2. Other documents produced by UK Government or state organisations;
- 3. European institution documents;
- 4. International organisation documents;
- 5. Foreign government institutions.
- A5.2.11 In the case of the majority of contaminants considered, the toxicological data has been drawn from the relevant CLR 9 TOX report, or updated toxicological data published by the Environment Agency (2009), ref. 9.28, where available. Where no TOX report is available reference has been made to the health criteria values, derived for use in Land Quality Press (2006), ref. 9.34, as this is considered to represent a peer reviewed data source. Similarly, fate and transport data has been derived in the first instance from

Appendix 5 pages v/i-v/ix

Environment Agency (2003), ref. 9.53 and for contaminants not considered in this document the fate and transport data used in previous versions of the CLEA model has been used.

- A5.2.12 Chemical laboratory test results are processed as follows. A statistical analysis of the results is conducted, as detailed in CIEH and CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', ref. 9.29. Individual concentrations are compared to the selected guideline values to identify concentrations of contaminants that are above the selected screening criteria.
- A5.2.13 Initially the distribution of the data set is to determine if the data set is, or is not, normally distributed. Where the distribution of the data is shown to be normal, the mean value test is applied to determine whether the mean characteristics of the selected soil unit present a significant possibility of significant harm to human health. Where the data is not normally distributed a method based on the Chebychev Theorem can be applied to test the same hypothesis. The significance of the data is further tested using the maximum value test. This determines whether the highest recorded contaminant concentrations are from the same statistical distribution or whether they may represent a 'hot spot'.
- A5.2.14 Where the risk estimation identifies significant concentrations of one or more contaminants, a further risk evaluation needs to be undertaken.
- A5.2.15 The risk evaluation will address the potential pollutant linkages between an identified source of contamination and the likely receptors both on and off site.
- A5.2.16 The potential receptors include:
 - 1) Humans current site occupants, construction workers, future site users and neighbouring site users.
 - 2) Controlled Waters surface water and groundwater resources
 - 3) Plants current and future site vegetation
 - 4) Building materials
- A5.2.17 The potential hazards to be considered in relation to contamination are:
 - a) Ingestion and inhalation.
 - b) Uptake of contaminants via cultivated vegetables.
 - c) Dermal contact
 - d) Phytotoxicity (the prevention or inhibition of plant growth)
 - e) Contamination of water resources
 - f) Chemical attack on building materials and services
 - g) Fire and explosion
- A5.2.18 Dependent on the outcome of the initial, generic contamination risk assessment, further detailed assessment of the identified risks may be required.

A5.3 Generic Guidance Values Used Within Contamination Risk Assessment

General Open Space (adjacent to dwellings)

Appendix 5 pages v/i-v/ix

General Open Space	Determinant	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source
space		1% SOM	2.5% SOM	6% SOM	
	Acenaphthene	15000	15000	15000	LQM/CIEH S4UL
	Acenaphthylene	15000	15000	15000	LQM/CIEH S4UL
	Anthracene	74000	74000	74000	LQM/CIEH S4UL
	Benzo(a)anthracene	29	29	29	LQM/CIEH S4UL
	Benzo(a)pyrene	5.7	5.7	5.7	LQM/CIEH S4UL
	Benzo(b)fluoranthene	7.1	7.1	7.1	LQM/CIEH S4UL
	Benzo(ghi)perylene	640	640	640	LQM/CIEH S4UL
РАН	Benzo(k)fluoranthene	190	190	190	LQM/CIEH S4UL
РАН	Chrysene	57	57	57	LQM/CIEH S4UL
	Dibenzo(ah)anthracene	0.57	0.57	0.57	LQM/CIEH S4UL
	Fluoranthene	3100	3100	3100	LQM/CIEH S4UL
	Fluorene	9900	9900	9900	LQM/CIEH S4UL
	Indeno(123-cd)pyrene	82	82	82	LQM/CIEH S4UL
	Naphthalene	4900	4900	4900	LQM/CIEH S4UL
	Phenanthrene	3100	3100	3100	LQM/CIEH S4UL
	Pyrene	7400	7400	7400	LQM/CIEH S4UL
Other Organics	Phenol	760	1500	3200	LQM/CIEH S4UL
	Arsenic	79	79	79	LQM/CIEH S4UL
	Beryllium	2.2	2.2	2.2	LQM/CIEH S4UL
	Boron	21000	21000	21000	LQM/CIEH S4UL
	Cadmium	120	120	120	LQM/CIEH S4UL
	Chromium (III)	1500	1500	1500	LQM/CIEH S4UL
	Chromium (VI)	23	23	23	LQM/CIEH S4UL
Metals	Copper	12000	12000	12000	LQM/CIEH S4UL
	Lead	630	630	630	DEFRA C4SL
	Mercury	16	16	16	LQM/CIEH S4UL
	Nickel	230	230	230	LQM/CIEH S4UL
	Selenium	1100	1100	1100	LQM/CIEH S4UL
	Vanadium	2000	2000	2000	LQM/CIEH S4UL
	Zinc	81000	81000	81000	LQM/CIEH S4UL

General Open Space	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Guidance Value (mg/kg)	Primary Data Source
	1% SOM	2.5% SOM	6% SOM	
Aliphatic				
EC 5-6	570000 (304)	590000	600000	LQM/CIEH S4UL
EC >6-8	600000	610000	620000	LQM/CIEH S4UL
EC >8-10	13000	13000	13000	LQM/CIEH S4UL
EC >10-12	13000	13000	13000	LQM/CIEH S4UL
EC >12-16	13000	13000	13000	LQM/CIEH S4UL
EC >16-35	250000	250000	250000	LQM/CIEH S4UL
EC >35-44	250000	250000	250000	LQM/CIEH S4UL
Aromatic				
EC 5-7 (benzene)	56000	56000	56000	LQM/CIEH S4UL
EC >7-8 (toluene)	56000	56000	56000	LQM/CIEH S4UL
EC >8-10	5000	5000	5000	LQM/CIEH S4UL

EC >10-12	5000	5000	5000	LQM/CIEH S4UL
EC >12-16	5100	5100	5000	LQM/CIEH S4UL
EC >16-21	3800	3800	3800	LQM/CIEH S4UL
EC >21-35	3800	3800	3800	LQM/CIEH S4UL
EC >35-44	3800	3800	3800	LQM/CIEH S4UL
Aliphatic and Aromatic				
EC >44-70	3800	3800	3800	LQM/CIEH S4UL
BTEX				
Benzene	72	72	73	LQM/CIEH S4UL
Toluene	56000	56000	56000	LQM/CIEH S4UL
Ethylbenzene	24000	24000	25000	LQM/CIEH S4UL
m/p Xylenes	41000	42000	43000	LQM/CIEH S4UL
o Xylene	41000	42000	43000	LQM/CIEH S4UL

SOM = Soil Organic Matter Values in brackets indicate the solubility or vapour saturation limit where this is exceeded by the GAC

A5.4 Guidance Values Used For Assessment of Risk To Controlled Waters

Alashior ug/l 0.7 0.7 Abamaccin ug/l 0.03 0.01 Aryninia ug/l 10 ¹ 25 200 Ammoniu (unionisch) ug/l 10 ¹ 25 200 Ammoniu (unionisch) ug/l 0.4 0.4 0.4 Antinony ug/l 0.4 0.4 0.5 Antiniony ug/l 0.4 0.4 0.4 Antiniony ug/l 0.05 0.05 Antraine ug/l 0.05 0.05 Anarxine ug/l 0.05 0.05 Baroni ug/l 0.05 0.05 Baroninic ug/l 0.005 ² 0.0005 ² Broninic ug/l 0.015 ² Broninic ug/l 0.15 ² Cabcin ug/l 0.15 ²	Contaminant	Units	EQS Freshwater ¹	EQS Saltwater ¹	Water Supply ⁵
Acylamide ug1 10 ² 2 200 Ammonium (a NH4) ug1 15 21 ² - Authracene ug1 0.4 0.4 0.5 Authracene ug1 0.4 0.4 5 Ascroite ug1 2.2 2.3 10 Attacing ug1 0.05 0.05 0.05 Actachinghos ug1 2.0 2.5 100 Actachinghos ug1 2.0 2.7 1 Beristine ug1 0.0005 ² 0.005 ² 1000 Beron mg1 2.0 7 1 1 Brominated Diphenylether ug1 0.0005 ² 0.0005 ² 1 1 Bromoxyall ug1 0.43 0.2 ² 5 2 2 5 Carbon Terachoride ug1 0.15 ² - 2 5 2 Carbon Terachoride ug1 0.1 1.4 1.4 1.4 1.4 <td>Alachlor</td> <td>ug/l</td> <td>0.7</td> <td>0.7</td> <td></td>	Alachlor	ug/l	0.7	0.7	
Aluminium ug1 10 ¹ 28 200 Anmonia (insinsch) ug1 15 21 ²	Abamectin	ug/l	0.03	0.01	
Anmonia (unionised) ug1 15 21^3 Anmonium (sN14) mg1 0.5 Ankreare ug1 0.4 0.4 Anstrois ug1 0.6 5 Arstrois ug1 0.05 0.05 Arrowine ug1 0.05 0.05 Arrowine ug1 0.05 0.05 Bariane ug1 0.05 0.05 Bariane ug1 7.5' 0.75' Browinisted Diphenylether ug1 0.0005' 0.0005' Hromine ug1 0.45' 0.2' 5 Calcium mg1 12' 12' 1000 Hromine ug1 0.15' - 1000 Calcium ug1 0.15' - 1000 Garban Terachloride ug1 0.1' 1.4' 1.4' Chorakanes ug1 0.1 0.1' 1.5' Carbon Terachloride ug1 0.1' <	· ·	U	-		
Annomium (as NH4) mg/l 0.4 0.5 Andracene yg/l 0.4 0.4 0.4 Ansimesory yg/l 30^2 23^2 10 Arsenic yg/l 0.05 0.57 10 Arancine yg/l 0.05 0.05 1 Barium yg/l 50^2 1 1000 Benzyl-buylphthalate yg/l 50^2 1 1000 Bernom mg/l 25^2 7^2 1 Brominated Dipherylether yg/l 5^2 10^2 7^2 1 Brominated Dipherylether yg/l 10000^2 250^2 5 10^2 7^2 1 Bromoxynil yg/l 0.15^2 -1^2 250^2 5^2 50^2 50^2 50^2 50^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2		-			200
Andmesse ug/l 0.4 0.4 0.4 Ansmin ug/l 50 ¹ 25 ³ 10 Arsenic ug/l 0.05 0.05 10 Arsenic ug/l 0.05 0.05 1000 Benzene ug/l 50 50 1 Benzene ug/l 50 50 1 Benzene ug/l 50 50 1 Bromins ug/l 0.0005 ¹ 0.005 ² - Bromins ug/l 0.43 0.2 ² 5 Calcium mg/l 100 1000 - Bromins ug/l 0.15 ² - 5 Calcium mg/l 1.1 ² 12 ³ 250 Carbon Tetrachloride ug/l 0.1 0.1 0.1 Chorenriphos ug/l 0.1 0.1 1. Chorenriphos ug/l 0.035 ² - 400 Chorenriphos ug/l		0	15	212	
Antimovy ug/l Ser 5 5 10 Arsenic ug/l 50^2 2^2 10 Atzmithiphos ug/l 0.05 0.05 100 Bariam ug/l 50 0.05 1000 Benzene ug/l 50 50 1 Benzyl-buryl-phthalate ug/l 50 50 1 Brominated Diphenylether ug/l 0.0005^2 0.00052 1 Brominated Diphenylether ug/l 0.0005^2 0.000052 1 Brominated Diphenylether ug/l 0.0005^2 0.000052 1 Brominated Diphenylether ug/l 0.0100 1000 1000 Carbon Atom ug/l 0.13^2 - 250 Carbon Atom ug/l 0.1 14 14 Choronylinio ug/l 0.1 0.1 1 Choronylinio (Choronylinio ug/l 0.03^2 - Cyolotione Pesticides (aldr			0.4	0.4	0.5
Arsenic ug/l S0 ² 25 ² 10 Atrazine ug/l 2 2 1 Azamethiphos ug/l 0.05 0.05 1 Bariann ug/l 50 50 1 Benzene ug/l 7.5 ² 0.75 ² 1 Bronine ug/l 5 10 1 Broninated Diphenylether ug/l 5 10 1 Broninated Diphenylether ug/l 1000 1000 25 Carbon Tetrachlorid ug/l 1000 1000 250 Carbon Tetrachlorid ug/l 0.15 ³ - 250 Carbon Tetrachlorid ug/l 0.3 0.3 0.3 Chlorordiazin ug/l 0.03 0.3 - Chlorodialoni ug/l 200 - 400 Chlorordialoni ug/l 200 - - Choronium II ug/l 200 - - Chlor		0	0.4	0.4	~
Atraxine ug/l 2 2 Barium ug/l 0.05 0.05 Barium ug/l 50 1000 Berne ug/l 50 1 Bernyl-bulyl-phthalate ug/l 0.005' 0.0005' Brominated Diphenylether ug/l 0.0005' 0.00005' Brominated Diphenylether ug/l 0.0000' 0.00005' Brominated Diphenylether ug/l 0.45' 0.02' 5 Brominated Diphenylether ug/l 0.45' 0.02' 5 Brominated Diphenylether ug/l 0.45' 0.2' 5 Carbon Terrachloride ug/l 0.15' - 250 Carbondrain ug/l 0.13' 0.1 1 1 Chloropalitos (Chlorpyrifos-ether) ug/l 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td>0</td> <td>50²</td> <td>252</td> <td></td>		0	50 ²	252	
Azarethiphos ug/l 0.05 0.05 Bariann ug/l 50 50 1 Benzene ug/l 7.5' 0.73' 1 Bronine ug/l 0.0005' 0.0005' 1 Broninated Diphenylether ug/l 0.0005' 0.00005' 1 Broninated Diphenylether ug/l 1000 1000 2 5 Broninated Diphenylether ug/l 0.45' 0.2' 5 2 Cadmium ug/l 1.010 1000 220 5 2 Cadmium ug/l 0.15' - 250 2 5 Cahorn Tetrachloride ug/l 0.1 0.1 1 1 1 Chorothaloni ug/l 0.1 0.1 1		0			10
Bartum ug/l 900 1000 Benzyl-Butyl-phthalate ug/l 50 50 1 Boron mg/l 2 7 1 Boroninet ug/l 5 0.005' 1 Brominet ug/l 5 0.0005' 1 Bromine ug/l 0.0005' 0.0005' 1 Bromine ug/l 0.45' 0.2' 5 Bromoxynil ug/l 0.45' 0.2' 5 Carbendzin ug/l 0.15' - 250 Carbendzin ug/l 0.1 0.1 1 1 Chloroninghos ug/l 20 - 400 1 Chloroninghos ug/l 40 40 1		U	=	_	
Brazene yg/l 50 50 1 Berzyl-buyl-phthatae ug/l 7.5^2 0.75^2 0.005^2 Brominacd Diphenylether ug/l 0.0005^2 0.0005^2 0.0005^2 Brominacd Diphenylether ug/l 0.0005^2 0.0005^2 0.0005^2 Bromoxynil ug/l 0.045^3 0.2^2 5.5 Carbon Tetrachloride ug/l 0.15^3 $ 250$ Carbon Tetrachloride ug/l 0.13^3 0.3 0.3 Chlorquinghos ug/l 0.03^2 $ 0.01^{10}$ Chlordhaloni ug/l 0.03^2^2 $ 400$ Chlordhaloni ug/l 0.3^2^2 $ 400$ Chlordhaloni ug/l 0.0^2^2 $ 400$ Chlordhaloni ug/l 0.01^2 $ 400$ Chlordhaloni ug/l 10^2 $ 400$ Chlordhaloni ug/l 10^2 $-$ </td <td></td> <td>0</td> <td>0.05</td> <td>0.05</td> <td>1000</td>		0	0.05	0.05	1000
Benzyl-butyl-phthalate ug/l 7.5^2 0.75^2 1 Brominated Diphenylether ug/l 0.0005^2 0.0005^2 Brominated Diphenylether ug/l 5 10 Brominy ug/l 1000 1000 Cadcium ug/l 0.43^3 0.2^2 5 Carbon Tetrachloride ug/l 0.15^2 - 250 Carbon Tetrachloride ug/l 0.13^2 - 250 Carbon Tetrachloride ug/l 0.1 0.1 0.1 Chlorytifos (Chlorytifos-ether) ug/l 0.3 0.3 0.3 Chlorothaloni ug/l 0.035^2 - 400 Chlorothaloni ug/l 0.1 0.1 0.1 Chlorothaloni ug/l 400 400 0.0 Chlorothaloni ug/l 100 100 0.2^2 0.2^2 Chlorothaloni ug/l 1^2 0.1^2 0.2^2 0.2^2			50	50	1
Boron mg/l 2 7 1 Brominated Diphenylether ug/l 0.0005 ² 0.0005 ² Bronnine ug/l 5 10 Bromoxynii ug/l 1000 1000 Cadnium mg/l 0.43 ³ 0.2 ² 5 Calcium mg/l 0.45 ³ 0.2 ² 5 Carben Tetrachloride ug/l 0.15 ² - 250 Carben Tetrachloride ug/l 0.1 0.1 1 Chloronyinghos ug/l 0.3 0.3 - Chloronyinghos ug/l 0.03 - - Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, ug/l $\Sigma - 0.01^2$ $\Sigma - 0.005^2$ - Chloronium II ug/l 250 - 400 Chlorothoron ug/l 20 - - Choronium V1 ug/l 12 ² - 50 Chromium II ug/l 0.1 0.1 - Cobal ug/l <td></td> <td></td> <td></td> <td></td> <td>*</td>					*
Brominated Diphenylether $ug/1$ 0.0005^2 0.0005^2 Bromine $ug/1$ 1000 1000 Cadnium $ug/1$ 1000 1000 Cadnium $ug/1$ 0.045° 0.2^2 5 Carbon Tetrachloride $ug/1$ 0.15^2 - 250 Carbon Tetrachloride $ug/1$ 0.1^2 1.2° 1.2° Carbon Tetrachloride $ug/1$ 0.1 1.4 1.4 Chlorowlinanes $ug/1$ 0.1 0.1 1.1° Chlorowlinanes $ug/1$ 0.1 0.1 1.1° Cholorytifos (Chloryvifos-ether) $ug/1$ 0.035^2 - 400 Chlorodhane $ug/1$ 0.2^2 0.2^2 .005² Chlorohane $ug/1$ 40.7^2 - 400 Chlorohane $ug/1$ 10.1 0.1 Chlorohane $ug/1$ 10.1 0.1		0			1
Bromine ug/l 5 10 Bromoxynil ug/l 1000 1000 Cadnium ug/l 0.45 ³ 0.2 ³ 5 Calcium mg/l 12 ² 12 ² 20 Carbon Tetrachloride ug/l 0.15 ³ - 20 Carbon Tetrachloride ug/l 0.3 0.3 0.3 Chloronolances ug/l 0.3 0.3 0.3 Chloropyrifos-cther) ug/l 0.35 ² - 400 Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, Isodrin) ug/l $\Sigma = 0.01^2$ $\Sigma = 0.005^2$ 2 Chlorophan ug/l 20 - 400 40 Chlorophan ug/l 20 - 50 Chronium III ug/l 3.4 ² 0.6 ² 2 Cobalt ug/l 1 ¹ 3.76 ⁷ 2 2 Coumaphos ug/l 0.1 0.1 ² 50 2 Colunotin ug/l 0.1 ²	Brominated Diphenylether		0.0005^2	0.0005^2	
Cadmium ug/l 0.4^{51} 0.2° 5 Calcium mg/l 12 [°] 250 Carbon Tetrachloride ug/l 112° 12 [°] Carbon Tetrachloride ug/l 0.15° - CloC13 Chloropxifos ug/l 0.1 1.4 Chloropxifos (Chlorpyrifos-ether) ug/l 0.03° $-$ Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, lodin) ug/l $\Sigma^{=0.01^{\circ}$ $\Sigma^{=0.005^{\circ}$ Chlorophano ug/l 200° - 400 Chlorophan ug/l 20° - 50 Chronium III ug/l 3.4° 0.6° - Cobalt ug/l 11° 3.76° 2 Commphos ug/l 0.1° 0.1° 2 Cyanide (hydrogen cyanide) ug/l 0.1° 0.1° 3 Cyanide (hydrogen cyanide) ug/l 0.2° 0.2° 2 Cyanide (hydrogen cyanide) ug/l		0			
Calcium mg/l 250 Carbon Tetrachoride ug/l 12^2 $l2^2$ $l2^2$ Carbon Tetrachoride ug/l 0.15^2 - $l14$ $l14$ Carbon Again ug/l 0.1 0.1 0.1 0.1 Clorenvinphos ug/l 0.3 0.3 0.3 0.3 Chlorphos ug/l 0.1 0.1 0.1 0.1 Chlorovinphos ug/l 0.035^2 - 400 Chloride mg/l 250 - 400 Chlorotolaron ug/l 4.7^2 - 50 Chronium II ug/l 4.7^2 - 50 Chronium VI ug/l 1^2 3.76^2 2 Comaphos ug/l 0.1 0.1 0.1^2 Cyanide (hydrogen cyanide) ug/l 0.1^2 0.2^2 0.2^2 Comaphos ug/l 0.1^2 0.1^2 0.2^2 <		U			
$\begin{array}{c c} \hline Carbon Tetrachloride & ug/1 & 12^2 & 12^2 \\ Carbondzin & ug/1 & 0.15^3 & - \\ Carbondzin & ug/1 & 0.15^3 & - \\ CloC13 Chloroalkanes & ug/1 & 1.4 & 1.4 \\ Chlorenvinphos & ug/1 & 0.3 & 0.3 \\ Chlorytifos-cher) & ug/1 & 0.1 & 0.1 \\ Chlorothalonil & ug/1 & 0.035^i & - \\ Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, ug/1 & \Sigma = 0.01^2 & \Sigma = 0.005^2 \\ Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, ug/1 & 250 & - \\ Chlorothalonil & ug/1 & 40 & 40 \\ Chlorothaloni & ug/1 & 20 & - \\ Chlorothaloni & ug/1 & 100 & 100 \\ Chlorothaloni & ug/1 & 0.1 & 0.1 \\ Chlorothaloni & ug/1 & 0.0 & 100 \\ Collogrepham & ug/1 & 100 & 100 \\ Coper & ug/1 & 100 & 100 \\ Copper & ug/1 & 0.1 & 0.1 \\ Cyanide (hydrogen cyanide) & ug/1 & 0.1^2 & 0.1^2 \\ Cyfluthrin & ug/1 & 0.01^2 & 0.1^2 \\ Cyfluthrin & ug/1 & 0.001 & 0.001 \\ 1.2-Dichlorothane & ug/1 & 0.02^2 & 0.3^2 \\ 2.4-Dichlorophenoxyacetic acid (2.4-D) & ug/1 & 0.3^2 & 0.3^2 \\ 2.4-Dichlorophenoxyacetic acid (2.4-D) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01^2 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01 & 0.01^2 \\ Dibutylphthalate (DBP) & ug/1 & 0.01 & 0.01 \\ Dimethoate & ug/1 & 0.01 & 0.004 \\ \hline Direcholphylphthalate (DBP) & ug/1 & 0.01 & 0.01 \\ Direcholphylphthalate (DBP) & ug/1 & 0.01 & 0.01 \\ Direcholphylphthalate (DBP) & ug/1 & 0.01 & 0.004 \\ \hline Direcholphylphthalate (DBP) & ug/1 & 0.01 & 0.01 \\ Direcholphylphthalate (DBP)$		0	0.453	0.22	5
$\begin{array}{c c} Carbendazin & ug/l & 0.15^2 & - \\ C10-C13 Chloroalkanes & ug/l & 1.4 & 1.4 \\ Clorent/inphos & ug/l & 0.3 & 0.3 \\ Chloryprifos (Chloryprifos-ether) & ug/l & 0.1 & 0.1 \\ Chlorothonoll & ug/l & 0.035^7 & - \\ Cyclodiene Pesticides (aldrin, Dieldrin, Endrin, lsodrin) & \Sigma^{-0.01^2} & \Sigma^{-0.005^2} \\ Chlorothanoll & ug/l & 250 & - & 400 \\ Chlorothonoll & ug/l & 20 & - \\ Chlorothanoll & ug/l & 20 & - \\ Chlorothanoll & ug/l & 20 & - \\ Chlorothanoll & ug/l & 20 & - \\ Chlorothuron & ug/l & 20 & - \\ Chlorohum VI & ug/l & 3.4^2 & 0.6^2 \\ Choronium VI & ug/l & 1.3 & 0.6^2 \\ Cobalt & ug/l & 100 & 100 \\ Copper & ug/l & 0.1 & 0.1 \\ Cyanide (hydrogen cyanide) & ug/l & 0.1 & 0.1 \\ Cyanide (hydrogen cyanide) & ug/l & 0.1^2 & 0.1^2 \\ Cynemethrin & ug/l & 0.1^2 & 0.1^2 \\ Cynemethrin & ug/l & 0.001 & 0.001 \\ 1.2 Dichloropethanol & ug/l & 0.2^2 & 0.2^2 \\ 2.4 Dichlorophenol & ug/l & 0.2^2 & 0.2^2 \\ 2.4 Dichlorophenol & ug/l & 0.2^2 & 0.2^2 \\ Dizzinon & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DBP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DBP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DBP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01^2 & 0.01^2 \\ Distrylphthalate (DMP) & ug/l & 0.01 & 0.01 \\ Direntoren & ug/l & 0.01 & 0.00 \\ Direntoren & ug/l & 0.01 & 0.00 \\ Direntoren & ug/l & 0.01 & 0.01 \\ Dire$	Calcium	mg/l			250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbon Tetrachloride			122	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Carbendazin	ug/l	0.15 ²	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		U	1.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0		0.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.1	
Isodrin) $ugl1$ $2-0.01$ $2-0.003$ Chloride mg/l 250 - 400 Chlorpham $ugl1$ 40 40 40 Chlornium III $ugl1$ 20 - 50 Chromium VI $ugl1$ 3.42 0.62 - Cobalt $ugl1$ 100 100 - 50 Cobalt $ugl1$ 12 3.762 2 - Cobalt $ugl1$ 0.1 0.1 - - Cypersentrin $ugl1$ 0.12 0.12 - - Cyperbehol $ugl1$ 0.12 0.12 - - L2-bichlorophenosyacetic acid (2.4-D) $ugl1$ 0.32 0.32 - - 1.2-bichlorophenol $ugl1$ 0.22 0.025 - - - J-bichlorophenol $ugl1$ 0.012 0.012 - - - J-bichlorophenol $ugl1$ 0.025 0		ug/l	0.035 ²	-	
Chlorpropham ug/l 40 40 Chlortoluron ug/l 20 - Chromium III ug/l 3.4 ² 0.6 ² Chomium VI ug/l 100 100 Cobalt ug/l 100 100 Copper ug/l 0.1 0.1 Cyamphos ug/l 0.1 ² 3.76 ² 2 Coumaphos ug/l 0.1 ² 0.1 ² 50 Cypermethrin ug/l 0.0 ² 0.1 ² 1 ² 50 Cypermothrin ug/l 0.1 ² 0.1 ² 1 ² 50 Cypermothrin ug/l 0.0 ² 0.1 ² 1 ² 50 Cypermothrin ug/l 0.0 ² 0.1 ² 1 ³ 3 2,4-Dichlorophenol 1 ³ 3 2,4-Dichlorophenol ug/l 0.2 ² 0.2 ² 0.2 ² 1 1 DDT (total) ug/l 0.01 ² 0.01 ² 1 1 1 Di	Isodrin)	ug/l	$\Sigma = 0.01^2$	$\Sigma = 0.005^{2}$	
Chlortoluron ug/l 20 - Chromium III ug/l 4.7^2 - 50 Chromium VI ug/l 3.4^2 0.6^2 - Cobalt ug/l 100 100 - Copper ug/l 1 ² 3.76^2 2 Coumaphos ug/l 0.1 0.1 - Cyanide (hydrogen cyanide) ug/l 0.1 ² 0.1 ² 50 Cygermethrin ug/l 0.001 0.001 - 3 2.4-Dichlorophenoxyacetic acid (2.4-D) ug/l 0.3 ² 0.3 ² - 2.4-Dichlorophenol ug/l 0.02 ⁵ 0.02 ⁵ - - 3.4-Dichlorophenol ug/l 0.02 ⁵ 0.02 ⁵ - - DDT (total) ug/l 0.01 ² 0.01 ² - - Diazinon ug/l 0.01 ² 0.01 ² - - Dichlorobenzenes (all isomers) ug/l 0.01 ² 0.01 ² - <	Chloride		250	-	400
Chromium III ug/l 4.7^2 - 50 Chromium VI ug/l 3.4^2 0.6^2		ug/l			
Chromium VI ug/l 3.4^2 0.6^2 Cobalt ug/l 100 100 Copper ug/l 1^2 3.76^2 2 Coumaphos ug/l 0.1 0.1 0.1 Cyanide (hydrogen cyanide) ug/l 1 ² 1 ² 50 Cypermethrin ug/l 0.1 ² 0.1 ² 0.1 ² Cyfluthrin ug/l 0.001 0.001 1 1,2-Dichlorochtane ug/l 0.3 ² 0.3 ² 3 2,4-Dichlorophenol ug/l 0.2 ² 0.2 ² 1 3,4-Dichloroanline ug/l 0.02 ² 0.2 ² 1 DDT (total) ug/l 0.01 ² 0.01 ² 1 Dibutylphthalate (DBP) ug/l 200 200 200 para, para-DDT ug/l 0.01 ² 0.01 ² 1 Dichlorobenzenes (all isomers) ug/l 400 400 400 Dicetylphthalate (DMP) ug/l 4000 4000		0		-	
Cobalt ug/l 100 100 Copper ug/l 1 ² 3.76^2 2 Coumaphos ug/l 0.1 0.1 0 Cyanide (hydrogen cyanide) ug/l 1 ² 1 ² 50 Cypermethrin ug/l 0.1 ² 0.1 ² 0.1 ² Cyfluthrin ug/l 0.001 0.001 0.001 1,2-Dichloroethane ug/l 0.3 ² 0.3 ² 3 2,4-Dichlorophenoxyacetic acid (2,4-D) ug/l 0.2 ² 0.2 ² 0.2 ² 2,4-Dichlorophenoxyacetic acid (2,4-D) ug/l 0.02 ² 0.2 ² 0.2 ² DT (total) ug/l 0.02 ² 0.2 ² 0.2 ² DT (total) ug/l 0.01 ² 0.01 ² 0.01 ² Dibidrylphthalate (DBP) ug/l 0.01 ² 0.01 ² 0.01 ² Diethylphthalate (DP) ug/l 0.01 ² 0.01 ² 0.01 ² Diethylphthalate (DMP) ug/l 0.01 0.01 0.01				-	50
Copper ug/l 1^2 3.76^2 2 Coumaphos ug/l 0.1 0.1 0.1 Cyanide (hydrogen cyanide) ug/l 1^2 1^2 50 Cypermethrin ug/l 0.1^2 0.1^2 0.12 Cyfluthrin ug/l 0.001 0.001 0.001 1,2-Dichlorophenoxyacetic acid (2,4-D) ug/l 4.2^2 0.042^2 2 2,4-Dichlorophenol ug/l 0.2^2 0.2^2 0.22 Ja-Dichlorophenol ug/l 0.01^2 0.01^2 Ja-Dichlorophenol ug/l 0.025^2 0.025^2 Jazionn ug/l 0.01^2 0.01^2 Diatylphthalate (DBP) ug/l 0.01^2 0.01^2 Dichlorobenzenes (all isomers) ug/l 0.01^2 0.01^2 Dichlylphthalate (DEP) ug/l 0.01^2 0.01^2 Dichlylphthalate (DOP) ug/l 0.01^2 0.01^2 Difubenzuron ug/l 0.01^2 0.01		0			
Coumphos ug/l 0.1 0.1 Cyanide (hydrogen cyanide) ug/l 1^2 1^2 50 Cypermethrin ug/l 0.1^2 0.1^2 50 Cypermethrin ug/l 0.1^2 0.1^2 0.1^2 Cypluthrin ug/l 0.001 0.001 0.001 1,2-Dichloroethane ug/l 0.3^2 0.3^2 3 2,4-Dichlorophenoxyacetic acid (2,4-D) ug/l 4.2^2 0.042^2 3 3,4-Dichlorophenol ug/l 0.2^2 0.2^2 0.2^2 DDT (total) ug/l 0.01^2 0.01^2 0.01^2 Diazinon ug/l 0.01^2 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 0.01^2 0.01^2 0.01^2 Diethorobenzenes (all isomers) ug/l 0.01^2 0.01^2 0.01^2 Diethylphthalate (DPP) ug/l 0.01^2 0.01^2 0.01^2 Dimethylphthalate (DOP) ug/l 0.01^2		0			2
Cyanide (hydrogen cyanide) $ug/l l^2 l^2 l^2 50 Cypermethrin ug/l 0.l^2 0.l^2 0.l^2 0.l^2 Cyfluthrin ug/l 0.001 0.001 0.001 1.2-Dichloroethane ug/l 0.3^2 0.3^2 2,4-Dichlorophenol ug/l 4.2^2 0.042^2 2.4-Dichlorophenol ug/l 0.2^2 0.2^2 0.2^2 3,4-Dichloronnine ug/l 0.025^2 0.025^2 0.01^2 0.01^2 DDT (total) ug/l 0.01^2 0.01^2 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 0.01^2 0.01^2 0.01^2 Dibutylphthalate (DEP) ug/l 0.00^2 0.01^2 0.01^2 Dimethylphthalate (DMP) ug/l 400 400 400 Dimethylphthalate (DMP) ug/l 0.01^2 0.1^2 0.1^2 Dimethylphthalate (DMP) ug/l 0.01 0.01 0.01 0.01 $		0	-		2
The top part part of the second se		U			50
Cyfluthrin ug/l 0.001 0.001 1,2-Dichloroethane ug/l		0		-	30
1,2-Dichloroethane ug/l 3 2,4-Dichlorophenoxyacetic acid (2,4-D) ug/l 0.3^2 0.3^2 2,4-Dichlorophenol ug/l 4.2^2 0.042^2 3,4-Dichloroaniline ug/l 0.2^2 0.2^2 DDT (total) ug/l 0.01^2 0.01^2 DDT (total) ug/l 0.01^2 0.01^2 Diazinon ug/l 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 40 40 Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 1000^2 0.01^2 Diethylphthalate (DPP) ug/l 1000 1000 Dioctylphthalate (DOP) ug/l 0.01^2 0.1^2 Dimethoate ug/l 0.01^5 0.1 Doromectin ug/l 0.01^5 0.1 Doromectin ug/l 0.01 0.004 Dimethylphthalate (DOP) ug/l 0.01 0.01 Dimethylphthalate (DMP) ug/l 0.1 0.1 Doromectin u		U			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0.001	0.001	3
2,4-Dichlorophenol ug/l 4.2^2 0.042^2 3,4-Dichloroaniline ug/l 0.2^2 0.2^2 DDT (total) ug/l 0.025^2 0.025^2 Diazinon ug/l 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 40 40 Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01^2 0.01^2 Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 400 40 Dimethylphthalate (DOP) ug/l 400 40 Dimethoate ug/l 0.48^2 0.48^2 Diflubenzuron ug/l 0.01 0.01 Doromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Endosulfan ug/l 0.01 0.01 Dirotylphthalate (DOP) ug/l 0.01 0.01 Dirotylphthalate (DOP) ug/l 0.01 0.01 Difubenzuron ug/l <td>· · · · · · · · · · · · · · · · · · ·</td> <td>0</td> <td>0.32</td> <td>0.32</td> <td>5</td>	· · · · · · · · · · · · · · · · · · ·	0	0.32	0.32	5
3,4-Dichloroaniline ug/l 0.2^2 0.2^2 DDT (total) ug/l 0.025^2 0.025^2 Diazinon ug/l 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 40 40 Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01^2 0.01^2 Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 4000 4000 Diotylphthalate (DOP) ug/l 4000 4000 Dimethylphthalate (DOP) ug/l 0.48^2 0.48^2 Diflubenzuron ug/l 0.01 0.01 Doromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.004 Endosulfan ug/l 0.01 0.01 Dirotydrin ug/l 0.01 0.01 Epichlorohydrin ug/l 0.01 0.1 Ethylbenzene ug/l					
Diazinon ug/l 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 40 40 Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01 ² 0.01 ² Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 400 40 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48 ² 0.48 ² Diflubenzuron ug/l 0.01 0.01 Dioromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Diron ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Endosulfan ug/l 0.01 0.1 EDTA ug/l 200 </td <td></td> <td>ug/l</td> <td></td> <td></td> <td></td>		ug/l			
Diazinon ug/l 0.01^2 0.01^2 Dibutylphthalate (DBP) ug/l 40 40 Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01 ² 0.01 ² Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 400 40 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48 ² 0.48 ² Diflubenzuron ug/l 0.01 0.01 Dioromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Diron ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Diror ug/l 0.01 0.01 Endosulfan ug/l 0.01 0.1 EDTA ug/l 200 </td <td></td> <td>U</td> <td>0.025²</td> <td>0.025²</td> <td></td>		U	0.025 ²	0.025 ²	
Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01^2 0.01^2 Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 4000 4000 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48^2 0.48^2 Diflubenzuron ug/l 0.01 0.01 Doromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Dizon ug/l 0.01 0.01 Dironectin ug/l 0.01 0.01 Diron ug/l 0.01 0.004 Endosulfan ug/l 0.01 0.004 Epichlorohydrin ug/l 200 200 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 <td></td> <td></td> <td></td> <td></td> <td></td>					
Dichlorobenzenes (all isomers) ug/l 200 200 para, para-DDT ug/l 0.01^2 0.01^2 Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 4000 4000 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48^2 0.48^2 Diflubenzuron ug/l 0.01 0.01 Doromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Dizon ug/l 0.01 0.01 Dironectin ug/l 0.01 0.01 Diron ug/l 0.01 0.004 Endosulfan ug/l 0.01 0.004 Epichlorohydrin ug/l 200 200 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 <td></td> <td>U</td> <td></td> <td>40</td> <td></td>		U		40	
Diethylphthalate (DEP) ug/l 1000 1000 Dimethylphthalate (DMP) ug/l 4000 4000 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48 ² 0.48 ² Diflubenzuron ug/l 0.015 0.1 Doromectin ug/l 0.01 0.01 Diuron ug/l 0.01 0.01 Dirothoate ug/l 0.01 0.01 Diromectin ug/l 0.01 0.01 Diron ug/l 0.01 0.01 Diron ug/l 0.1 0.004 Endosulfan ug/l 0.01 0.004 EDTA ug/l 4000 4000 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5		ug/l			
Dimethylphthalate (DMP) ug/l 4000 4000 Dioctylphthalate (DOP) ug/l 40 40 Dimethoate ug/l 0.48^2 0.48^2 Diflubenzuron ug/l 0.015 0.1 Doromectin ug/l 0.01 0.01 Diuron ug/l 1.8 1.8 Endosulfan ug/l 0.01 0.004 Epichlorohydrin ug/l 0.01 0.01 EDTA ug/l 200 200 Ethylbenzene ug/l 0.1 0.1 Fenchlorphos ug/l 1.1 1 Flucofuron ug/l 3^4 15 1.5			0.012	0.012	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		U			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			
Diuron ug/l 1.8 1.8 Endosulfan ug/l 0.01 0.004 Epichlorohydrin ug/l 0.1 0.1 EDTA ug/l 4000 4000 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5					
Endosulfan ug/l 0.01 0.004 Epichlorohydrin ug/l 0.1 0.1 EDTA ug/l 4000 4000 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5					
Epichlorohydrin ug/l 0.1 EDTA ug/l 4000 4000 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5					
EDTA ug/l 4000 4000 Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5			0.01	0.004	0.1
Ethylbenzene ug/l 200 200 Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Flucoride mg/l 3 ⁴ 15 1.5		0	4000	4000	0.1
Fenchlorphos ug/l 0.1 0.1 Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5					
Flucofuron ug/l 1 1 Fluoride mg/l 3 ⁴ 15 1.5					
Fluoride mg/l 3 ⁴ 15 1.5		U			
6		0			15
wg i i i		0			1.2
Formaldehyde ug/l 50 -					

Contaminant	Units	EQS Freshwater ¹	EQS Saltwater ¹	Water Supply ⁵
Glyphosate	ug/l	196 ²	196 ²	
Hexachlorobenzene	ug/l	0.05	0.05	
Hexachlorobutadiene	ug/l	0.6	0.6	
Hexachlorocyclohexane (lindane)	ug/l	0.04	0.02	
Hydrogen Sulphide	ug/l	1	10	
Ioxynil	ug/l	100	100	• • • •
Iron	ug/l	1000 ²	1000 ²	200
Isoproturon	ug/l	1	1	
Ivermectin	ug/l	0.001	0.001	
Kjeldahl Nitrogen (as N)	mg/l	7.02	7.02	1
Lead	ug/l	7.2^2 0.5^2	7.2^2 0.5^2	10
Linuron Malachite Green	ug/1	100	100	
Malachite Green Magnesium	ug/l mg/l	100	100	50
	0	123 ²	-	50
Manganese Mecoprop	ug/l ug/l	125	182	30
Methiocarb	ug/l	0.012		
Mancozeb	ug/l	20	- 20	
Maneb	ug/l	30	30	
MCPA	ug/l	120 ³	800	
Methylphenols	ug/l	300	300	
Mevinphos	ug/l	0.02	-	
Monochlorophenols	ug/l	250	250	
Mercury	ug/l	0.07	0.07	1
Naphthalene	ug/l	2.42	1.22	
Nickel	ug/l	20 ²	20 ²	20
NTA	ug/l	10000	30000	
Nitrate (as N)	mg/l			50
Nitrite (as NO2)	mg/l			0.5
Nonylphenol (4-nonylphenol)	ug/l	2	2	
Oils/hydrocarbons	ug/l			10
Pendimethylin	ug/l	0.3 ²	-	
Permethrin	ug/l	0.001 ²	0.0002^2	
Polycyclic Aromatic Hydrocarbons (PAH)	ug/l			0.1
- Benzo(a)pyrene	ug/l	0.1	0.1	0.01
- Benzo(b)fluoranthene	ug/l	$\Sigma = 0.03^{2}$	$\Sigma = 0.03^{2}$	
- Benzo(k)fluoranthene	ug/l			
- Benzo(ghi)perylene	ug/l	$\Sigma = 0.002^{2}$	Σ=0.002	
- Indeno(123-cd)perylene	ug/l	0.0072	0.00072	
Pentachlorobenzene	ug/l	0.0072	0.00072	
Pentachlorophenol Pesticides (individual)	ug/l	1	1	0.1
- Aldrin	ug/l ug/l			0.1 0.03
- Aldrin - Dieldrin	ug/l			0.03
- Heptachlor	ug/l			0.03
- Heptachlor epoxide	ug/l			0.03
Pesticides (total)	ug/l			0.03
Phenol	ug/l	7.72	7.72	0.5
PCSDs	ug/l	0.05	0.05	0.0
Pirimicarb	ug/l	5	5	
Pendimethalin	ug/l	6	6	
Primaphos-methyl	ug/l	0.05	0.05	
Prochloraz	ug/l	40	40	
Propetamphos	ug/l	0.1	0.1	
Propyzamide	ug/l	1000	1000	
Phosphorous	ug/l			2200
Potassium	mg/l			12
Selenium	ug/l			10
Silver	ug/l	0.1	1	10
Simizine	ug/l	4	4	
Styrene	ug/l	500	500	
Sulcofuron	ug/l	25	25	
Sulphate	mg/l	400	-	250
Surfactants (as lauryl sulphate)	ug/l			200
Tecnazene	ug/l	10	10	
Tetrachloromethane (PCM)	ug/l	2.5^{2}	2.5 ²	3

Contaminant	Units	EQS Freshwater ¹	EQS Saltwater ¹	Water Supply ⁵
Tetrachloroethylene (PCE)	ug/l	10 ²	10 ²	10
Tetrachloroethane	ug/l	140 ²	-	
Trichloroethylene (TCE)	ug/l	10 ²	10 ²	10
Thiabendazole	ug/l	50	50	
Tin (inorganic)	ug/l	25 ²	10 ²	
Trihalomethanes	ug/l			100
Trichlorobenzenes	ug/l	0.42	0.4 ²	
Toluene	ug/l	74 ²	74 ²	
Tributyl phosphate	ug/l	500	500	
Tributyltin	ug/l	0.0015	0.0015	
Trifluralin	ug/l	0.03 ²	0.03 ²	
Vanadium	ug/l	20^{4}	100	
Vinyl chloride	ug/l			0.5
Zinc	ug/l	11.9 ²	7.9 ²	5000

¹ MAC – Maximum Allowed Concentration ² AA – Average Annualised ³ Dependant on pH ⁴ Dependant on water hardness ⁵ For sample taken at consumers' taps

8/23/2017

Page 1 | Borehole NX46NW7 | Borehole Logs

British Geological Survey

Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

< Prev

<<

Page 1 of 2 V Next > >>

BGS ID: 620801 : BGS Reference: NX46NW7

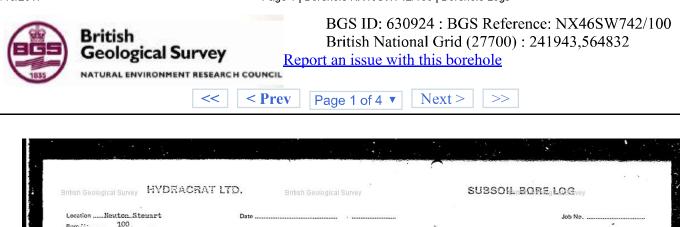
British National Grid (27700) : 241087,566149

Description		Thick- ness (m)	less Level	Level Samj	Samples	es N	N (%)		ρ c Mg/m*) (kN/m²)	LL (%)	FL (%)	РІ (%)	Indicated Safe Bearing Capacity (kN/m²)	
									 			Strip	Squara	
lling:- Brick,sand and boulders	0.25	0.25							 					
Iling:- Medium dense dark brown clayey and and gravel with sandy rubble and bokets of clay Britsh Geological Survey		3.65		D 0.50 D 2.00 D	8ritish Ge	blogical S	urvey				British	Geological	Survey	
	3.90			3.00										
edium dense dark brown clayey sand and ravel	5.45	1.55		D+B 4.00	15 4.15									
oose fine uniform brown clayey silty and and gravel	5.80	0.35		D+B 5.50	7									
edium dense coarse sand and fine to oarse gravel British Geological Survey	7.00	1.20 pen.	iltish Geol	D+B 6.50	15 6.65				Ruitak Ga	المواوما و				
2							·							
											1			

8/10/2017 Page 1 | Borehole NX46NW8 | Borehole Logs BGS ID: 620802 : BGS Reference: NX46NW8 British British National Grid (27700) : 241097,566143 **Geological Survey** Report an issue with this borehole NATURAL ENVIRONMENT RESEARCH COUNCIL << < Prev Next > >> Page 1 of 2 **v** s. BOREHOLE RECORD indicated Safe (kN/m²) Thick Depth Level (m) 'n ρ (Mg/m*) (%) PL (%) PI (%) Sample ø (deg.) Description (%) ness (m) (kN/m²) (m) Strip Square 2.00 Filling:- Bricks, gravel, boulders and D 0.50 2.00 sand Filling:- Medium dense dark brown clayey 2.10 D 2.50 sand, gravel, boulders with pockets of 4.10 clay Medium dense dark brown clayey sand and 0.70 D+B 16 4.20 gravel 4.80 2.20 D+B 5.00 Medium dense coarse sand and fine to 16 coarse gravel pen. D+B 6.50 17 7.00 British Geological Survey Remarks: Water sample taken SO₃ at 2.50 metres = 0.09% pH at 2.50 metres = 7.5 Symbols: N - Number of blows in Standard Penetration Test w - Natural moisture content P - Natural bulk density c - Apparent cohesion ø - Angle of internal friction LL - Liquid limit PL - Plastic limit PI - Plasticity index U - 100 mm diameter undisturbed sample D - Disturbed sample B - Bulk sample NICHOLSON (SITE INVESTIGATION) LIMITED, BATHGATE ROAD, ARMADALE

0/00/004	7
8/23/2017	(

Page 1 | Borehole NX46NW9 | Borehole Logs


				<u> </u>	of 2		Nex	•						
		- 14	• #	•										
01d Commill "Minnigsff" New	ton Stowa			HOLE					01 7				-	
ATION: Old Cornmill, "Minnigaff", New HOLE NO.:								NCED: TED:						
Description	Depth (m)	Thick- ness	Level (m)	Samples	'n	- w (%)	р (Ma/m*)	c (kN/m²)	g (deg.)	LL (%)	PL (%)	PI (%)	Indicate Bearing (kN)	
		(m)					(((009.)	1767	(///	(767	Strip	Square
osoil	0.10	0.10												
ling:- Firm clay, clayey sand and lium to coarse grayed Geological Survey	1.10	1.00		D+B 0.50	0.65	logical S	urvey					British	eological (urvey
nse fine to coarse brown clayey sand d gravel		1.30		D+B 1.50	40*									
dium dense fine to coarse greenish bro		2.80		D+B	1.65									
ayey sand and gravel with traces of c				2.50 D+B 4.00	19 2.65 24									
dium dense greenish brown medium to	5.20	1.80		D+B	4.15									
arse sand and fine to coarse gravel	7.00	pen.	ish-0-eel	5.50 gical Surve	20 5.65					بمن بلوالانا	logical S	iney		
							1							
· ·														
12														
											1			

8/10/2017

Page 1 | Borehole NX46NW10 | Borehole Logs

<<	< P	rev	Pa	ge 1 d	of 2 🔻		Next	>	>>]				
OCATION:		rt JOB	NO.:	cal Survey	î	DATES:		NCED:2	07.,88 07.,88		ER LEVE lical Survi Depth b	LS: INIT	n IAL:5. AL:4	.3.0. m
Description	Depth (m)	Thick- ness (m)	Level (m)	Samples	, N	w (%)	م (Mg/m ^e)	c (kN/m²)		LL (%)	PL (%)	Pi (%)	10000 Conten/a	d Safe Capacity
Filling:- Dense brown, dark brown and gre		2.30		D+B								-	Strip	Squar
sandy clay with fine to coarse gravel	΄	2.00		0.50 D+B	39 0.65		84							
, British Geological Survey	2.30			2.00 Brit	22	aical Surv	ev					iritish Ge	logical Sur	rev
Medium dense brown clayey sand and fine t coarse gravel		3.00		D+B 2.50	17									
Sector Branch				D+B 4.00	2.65									
Medium dense coarse sand and fine to	5.30	1.70		D+B	4.15									
coarse gravel	7.00	pen.		5.50	21									
	1-1-00		†		5.05					†				
British Geological Survey		Britis	in Geologi	al Survey					ы	tish Geoloi	rical Surv	ey		
			8											
10 10														
Remarks: Water sample taken	_	1	1	1	I	SO, at	0.50 me	tre = 0	.06%	pH at	0.50 me	etre = '	7.0	

Page 1 | Borehole NX46SW742/100 | Borehole Logs

Description	Thicknoss	Depth	Level	'N' Value blows/ft.	Samples	- m (35)	8 kg/m ³	8d kg/m ³	c N/m ²	¢ (deg)	L.L. (5)	P.L.	Group	Net 2 Capacit	terring v r(N/n
								- syr		(arg)	1.47			Strip	Spre
Popsoil and gravel	0.23	0.23	a a												
British Geological Survey Commact cobbles, boulders and fine to coarse gravel with a little fine to coarse sand	2.21	2.44		Britis	h GeBlogica 1.52	Survey		120	~			British	Geolo	gicar sur	ey
Compact cobbles and boulders with a little fine to coarse gravel	3.66				B 3.05 B 4.57										
		6.10			B 6.10				·					· · ·	-
*						-									
iritish Geological Survey		Br	itish Geologi	al Survey					British G	eologi	al Sur	vey.			
			÷					- 24							
o						41 1		e 14							
			-			1								-	
REMARKS:-			1												
British Geological Survey				Britis	h Geologica	al Survey						British	Geolog		

Page 1 | Borehole NX46SW742/101 | Borehole Logs

British Geological Survey

BGS ID: 630925 : BGS Reference: NX46SW742/101 British National Grid (27700) : 241806,564763 Report an issue with this borehole

>>

NATURAL ENVIRONMENT RESEARCH COUNCIL

<<

< Prev Pa

Page 1 of 4 Vext >

British Geological Survey HYDRACRAT	LTD.	B	ritish Geologi	' • ical Survev		•		SUBS	SOIL BO	RE	LOG	rvev		x x	
Location						Water I	 evel / Initia		Final						
Derription	Thicknoss	Depth m	Level	'N' Value blows/ft.	Samples	m (%)	8 kg/m ³	əd kg.'m ³	c ∧t/m²	ø (deg)	L.L. (%)	P.L. (%)	Group Symbol	Net E Capacit Strip	
Topsoil and gravel	0.38	0.38	21.53				•							Strip	Spre
Compact cobbles, touldersand fine to coarse gravel with a little fine to coarse sand.	1.98	2.36		Briti	th Geglogic: 1.52	l Survey						Britis	h Geolo	gical Sur	vey
Compast cobbles and boulders with a little fire to coarse gravel	4.50			÷.,	B 4.57 B 6.10									1	
Compact fine to coarse gravel with come fine to coarse clayey sand	2.13	6.86 8.99	15.05		5.20 5.84										
emisi Geologica Saney	and shifts t			el Ganey-					- Brilleh	Geolog	cal Si	eroy.			
				2											1 N N
REMARXS:- Bore opened up to 4.6 m	notres by	JCB to c	onfirm fir		sh Geologica	al Survey		33			I	Britis	h Geold	oical Sur	Vev

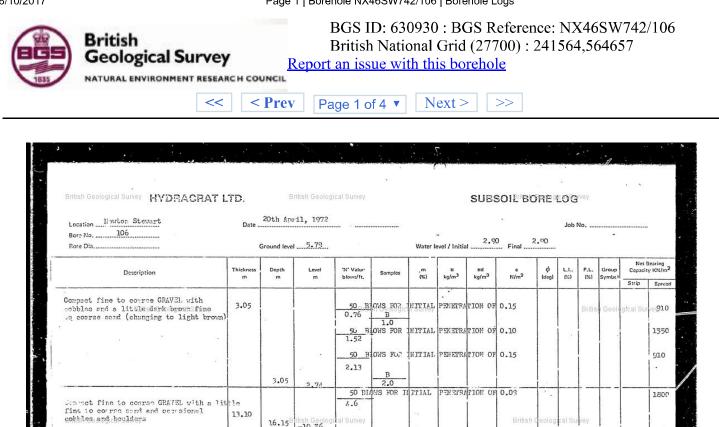
REMARKS:-

Bore opened up to 4.6 metres with JCB

1

Page 1 | Borehole NX46SW742/105 | Borehole Logs

	<< <	Prev	Pac	ge 1 of	f4 🔻	Ne	ext >		>>						
				,											
						0. G 0.					1	. /		. <u>1</u> .	•••
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				(								prost of the states	
British Geological Survey HYDRA	CRAT LTD.	Br	itish Geologic	al Survey				SUB	SOILBC	REI	og	ey		• •	
Location Newton Stewart	Date	20th.Ap	ril, 1972								Job N	ło			
Bore No105 Bore Dia		Ground leve	el	12 31		Water le	evel / Initia	1.83	Final	1.83					
Description	Thickness	Depth	Level	'N' Value	Samples	• m	8	Ed	, <b>,</b> , , , , , , , , , , , , , , , , ,	¢	LL		Group	Net Be Capacity	enting KN/
Description	Thickness m	Depth m	Level	'N' Velue blows/ft.	B	• m (%)	8 kg/m ³	ed kg/m ³	c N/m ²	¢ (dag)	L.L. (55)		Group Symbol	Net Be Capacity Strip	erring KN/i Spr
British Geological S	m Survey			blows/ft.		(%)	kg/m ³	kg/m ³	N/m ²		(5)	(%)	Symbol	Capacity	Spi
	survey 6.10			50 H 0.76 50 B	B 1.0	(%)	kg/m ³ renetra	kg/m ³	N/m ²		(5)	(%)	Symbol	Capacity Strip	spi ey 9]
Brillsh Geological S Compact fine to coarse GRAVEL cobbles and a little fine to	survey 6.10			50 11 0.76 50 B1 1.52 50 B1	B 1.0 1593 'Yog' 1	(S) Fitial	kg/m ³ renetration	kg/m ³ ion of	N/m ² 0.15 0.15		(5)	(%)	Symbol	Capacity Strip	Spr
Brillsh Geological S Compact fine to coarse GRAVEL cobbles and a little fine to	survey 6.10			50 m 0.76 50 m 1.52	B 1.0 bus for 1 lows for i	(S) Fitial	kg/m ³ renetration	kg/m ³ ion of	N/m ² 0.15 0.15		(5)	(%)	Symbol	Capacity Strip	897 93 91
Brillsh Geological S Compact fine to coarse GRAVEL cobbles and a little fine to	survey 6.10			50 11 0.76 50 B1 1.52 50 B1	B 1.0 bws for 1 lows for in rs for in B	(S) Fitial	kg/m ³ renetration	kg/m ³ ion of	N/m ² 0.15 0.15		(5)	(%)	Symbol	Capacity Strip	ey 91 93
Brillsh Geological S Compact fine to coarse GRAVEL cobbles and a little fine to	survey 6.10	m	m	50 11 0.76 50 B1 1.52 50 B1	B 1.0 bws for 1 lows for in rs for in B	(S) Fitial	kg/m ³ renetration	kg/m ³ ion of	N/m ² 0.15 0.15		(5)	(%)	Symbol	Capacity Strip	ey 9: 9:


British Geological Survey

British Geological Surv

REMARKS:-

British Geological Survey

Page 1 | Borehole NX46SW742/106 | Borehole Logs



British

¢-Angle of internal friction

.

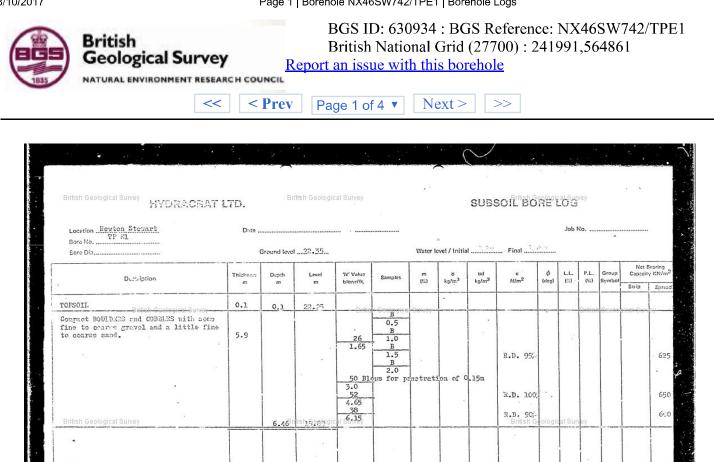
e-Apparent cohesion

British Geological Survey

13.10

SYMBOLS: 'N'-No, of blows per foot in standard paretration test m-Natural moisture content 8-Natural bulk density 8d-Dry De

16.15


-10,36

Page 1 | Borehole NX46SW742/TPD1 | Borehole Logs



Location lieuton Steunst	Data								s.		Job I	vio.		•	
Bore Dia. 150mm			1 19.80			Water I	s evel / Initia	12.8	Final	3					
Description	Thickness m	Depth m	Level	'N' Valui blows/ft.	Samples	,m (%)	в kg/m ³	8d kg/m ³	c N/m ²	ý (deg)	L.L. (53)	P.L. (%)	Group Symbe ¹	Net B Capacity Strip	
T0.501L	0.2	0.2	18,60				· ·								
Complet BOUNDERS and Classes with some fine to competend	1.0	1.2	17.60	l	0.5	Garrey -						อาเตรก	Geolo	ircai Surv	ΞŶ
Compart fine to course SALD with some fine to course gravel and occasional layers of fine to median cood	0.7	1.9	16.90	22 1.65	<u>B</u> 1.5				R.D. 90%-						60
Correct SOU-JEAD and CONFLAD with some fine to contae or val and cocation levers of fine to correct sond				33 3.15 40	 2.5 ₩				R.D. 100; R.D. 95;						6
British Geological Survey	4.1	Br <u>6.0</u>	itish Geologic 12,80	4.65 al SUSTRY 6.15					R.D.U.1005	ologic	al Sun	vey			6
٥			10												
REMARKS:- D 0.5 unantitable for GGR 90 British Geological Survey	j. gro∙t:	e then (	5"	Britis	h Geological	Survey							Geoloc	ical Surv	ev

Page 1 | Borehole NX46SW742/TPE1 | Borehole Logs



REMARKS:- B (, 5 ) , 5 ), 5 ), 5 () ໄດ້ເປັນ ໂດຍ ອາສາດສະຫາ 70) ລາວ 55, granter than ວິສ B 2 Julish Geological Stavello, ກວາ 5:2, 85, granter ໃຫ້ເປັນໃຫ້ກ່າວໃຫ້ແລງ Survey

British Geological Survey